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Abstract 

An ongoing evolutionary question is how co-occurring species maintain 

reproductive barriers when they are morphologically, behaviorally, and ecologically 

similar. Without geographic isolation, traits involved in species recognition may be under 

selection to enhance reproductive barriers. Exaggerated trait differences between species 

in sympatric populations may reflect selection to reduce misdirected mating between 

species, or reproductive character displacement. While this phenomenon is widely 

recognized as an important stage in the speciation process, there is little direct evidence 

of this process in nature. In two North American damselfly species, Calopteryx 

aequabilis and C. maculata, wing pigmentation is sexually dimorphic and also shows 

exaggerated differences in sympatric populations, particularly in female wings. When 

these species occur together, they occupy the same mating territories and the potential for 

misdirected mating is high. I hypothesize that female wing pigmentation is under 

selection for species recognition. In this study, I conducted male mate choice experiments 

in which I altered female wings by switching them within and between species. I 

measured male mating preference of both species in allopatric and sympatric populations 

by giving males a choice of two female types in a natural setting. Results supported the 

hypothesis that male preferences in sympatry diverge corresponding to female wing 

pigmentation. Sympatric C. aequabilis males preferred lighter-winged females, which 

significantly differed from the dark wing preferences of C. maculata males and allopatric 

C. aequabilis males. By manipulating the female wing pigmentation directly, I identified 

that this is the specific trait under selection. These findings indicate that male mating 

preferences and female wing pigmentation diverged in sympatry to reduce misdirected 

mating of two closely related species. 
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Introduction 

Understanding how species achieve reproductive isolation is a major evolutionary 

question that will help us understand the origin of biodiversity, including variation within 

and between species. Isolation naturally occurs when species are geographically 

separated or have allopatric populations (Dobzhansky, 1940), but how reproductive 

barriers evolve in sympatric, or co-occurring, populations are more difficult to discern. 

Like ecological character displacement, when species compete for ecological resources, 

reproductive character displacement may occur when sympatric species interfere in 

reproductive processes. Character displacement can result in competitive exclusion 

(Levin, 1970; Losos, 2000), the two species hybridizing into one species (Webb et al. 

2011; Sánchez‐Guillén et al. 2014), or divergence of reproductive traits between species 

(Pfenning & Pfenning, 2009). If mismatched courtship and matings are costly or if hybrid 

offspring have lower fitness (e.g. being inviable, infertile, unhealthy, or unattractive), 

reproductive barriers can evolve that prevent heterospecific matings through enhanced 

species recognition (Dobzhansky, 1940; Coyne & Orr, 1998; Cutter, 2012; Garner et al. 

2018).  

Mate choice can lead to reproductive isolation if differential mating preferences, 

or sexual selection pressures, act as a form of species recognition (Ridgeway and 

McPhail, 1984; Heisler et al. 1987; Friberg et al. 2008). Understanding the reproductive 

interactions between sympatric species can provide a better understanding of how species 

coexist and speciate (Pfenning and Pfenning, 2009). However, determining how 

individuals recognize conspecifics and select a mate is not always apparent, as mating 

preferences can be difficult to detect (Kokko et al. 2003).  

One system that can offer a unique insight to the role of mate choice as a form of 

prezygotic reproductive isolation is the Jewelwing damselfly radiation of North America, 

which includes Calopteryx aequabilis and C. maculata. These species have both 

allopatric and sympatric populations, with the species distribution of C. aequabilis 

ranging from the northern US to northern Canada, and C. maculata spanning the eastern 

half of the contiguous US (Hassall, 2014; Iyengar et al., 2014; Waage, 1975). When these 

species occur in sympatry, divergence of wing color has been observed in females, but 

not males (Waage, 1979). Both allopatric C. aequabilis and C. maculata females have 
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dark, highly pigmented wings. However, sympatric C. aequabilis females have 

significantly lighter wing color than both allopatric C. aequabilis and sympatric C. 

maculata females (Waage, 1979). This enhancement of phenotypic differences between 

co-occuring species suggests that wing pigmentation is under selection during mate 

choice as a reproductive barrier (Brown and Wilson, 1956; Iyengar et al., 2014). 

Wing pigmentation plays an important role in both sexual selection and species 

recognition in the Caloptergidae genus (Svensson et al. 2006; Serrano-Meneses et al. 

2008; Svensson and Waller, 2013), including C. aequabilis and C. maculata. In this 

system, females ready to reproduce will perch along streams, waiting for males to 

approach. Then, the males will court the females using elaborate wings displays (Meek & 

Herman, 1990). Previous research has focused almost exclusively on selection on male 

damselflies (Meek & Herman, 1990; Siva-Jothy, 1999; Córdoba-Aguilar, 2002; Svensson 

et al. 2006; Serrano-Meneses et al. 2008; Svensson and Waller, 2013). However, the role 

of sexual selection in females may also play an important role, because like males, 

females vary in degrees of mating success and have similar selection pressures (Clutton-

Brock & Huchard, 2013; Allison, 2016). Therefore, it is possible that this observed 

divergence in female wing color is functioning as a reproductive barrier in sympatry.   

Species recognition is likely the cause of Calopteryx female wing color 

divergence as no other barriers (behavioral, ecological, mechanical, geographic, or 

temporal) have been observed in this system (Waage, 1975). Additionally, heterospecific 

mating is rarely observed though hybridization is possible (Waage, 1975). Research by 

Waage (1975) supported the idea of female wing color acting as a reproductive barrier by 

showing that both allopatric and sympatric C. maculata males preferred dark-winged 

over light-winged females. However, that study did not account for female mating 

behaviors, as dead female models were utilized, and C. aequabilis male mating 

preferences were also not determined. I aimed, therefore, to determine if the mating 

preferences of both sympatric C. aequabilis and C. maculata males differ between 

allopatric and sympatric populations, and if mate choice is affected by female wing 

pigmentation. I hypothesized that males of both species would prefer the pigmentation of 

sympatric, conspecific females, and that male preference of the two species would 

diverge in sympatric populations. To test this hypothesis, I conducted mate choice 
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experiments in which I manipulated female wing pigmentation and measured Calopteryx 

male preference of dark- or light-winged females in sympatric and allopatric populations.  

 

Methods 

To determine male preferences of female Calopteryx wing color, I conducted two 

types of mate choice experiments between 6/18/18 and 7/21/18: tent and tether 

experiments. These experiments were designed to give C. aequabilis and C. maculata 

males a choice of either dark- or light-winged females that were surgically altered in both 

species. Tent experiments measured sympatric male preferences only, and tether 

experiments measured both sympatric and allopatric male preferences. Additionally, I 

surveyed population ratios at the sympatric experimental site to better understand the 

local composition of co-occurring Calopteryx populations and verify that sympatric 

species do indeed have the possibility to interact and hybridize at a smaller spatial scale.  

 
Damselfly Collections 

 
Female Calopteryx damselflies were collected throughout the experimental period 

to provide a supply of wings for the mate choice experiments. Allopatric C. aequabilis 

were collected from Bertrand Creek, Ontario (48°42'39.9"N, 85°33'43.3"W; Figure 1) 

and allopatric C. maculata from Smith Creek, VA (38°37'38.6"N, 78°39'45.8"W; Figure 

1). Sympatric Calopteryx damselflies of both species were collected in the Au Sable 

River, MI (44°39'29.6"N, 84°43'45.0"W; Figure 1). All damselflies were collected using 

insect nets (40cm-diameter hoop, aerial net, aluminum handle). To minimize handling 

effects, collectors removed bug spray and/or sunscreen from their hands before 

collections. Each specimen collected for wings was measured for wing length and frozen 

in individual glassine envelopes until used for the wing transplant experiments. 
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Figure 1. Locations of the mate choice experiments conducted on Calopteryx 

populations. Allopatric C. aequabilis populations were at Bertrand Creek, Ontario 

(yellow), allopatric C. maculata populations were at Smith Creek, Virginia (black), and 

sympatric populations were located along the Au Sable River, Michigan (grey). Grey 

shaded region indicates the area of sympatry from other studies (Cooper et al., 

unpublished data).   

 

Wing Grafting Procedure 

 

To control for other differences between species, we experimentally manipulated 

female damselflies by removing and replacing their wings with a new set of the same 

approximate size. We followed the general methods of Greene et al. (1987) that 

transplanted wings between Musca domestica and Zonosemata flies. In this study, 

however, we used thin Loon Outdoors UV Clear Fly Finish glue and a Loon Outdoor UV 

Bench Light to cure the glue. 
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All females being manipulated (i.e. receiving wing grafts) for tent and tether 

experiments were collected during the day prior to the procedure. The damselflies were 

kept overnight in mesh-net cages covered in a damp cloth towel and placed in a cooler 

with ice. For the procedure, the wings of these females were removed and replaced with 

frozen wings using the wing grafting procedure depicted below (Figure 2; Appendix). 

After the wing grafts, females were still able to fly and mate for up to two days before the 

wings became brittle.  

 

 

Figure 2. Damselfly wing manipulation procedure. (A) The damselfly is placed on her 

back with weights (e.g. standard microscope slide) on her wings to hold her in place. (B) 

The original wing is cut and removed with a Stanley razor blade or x-acto knife, leaving a 

small portion of the wing near the thorax. (C – D) The new wing, with glue on the tip, is 

placed on the remaining portion of the original wing. (E) UV curing light applied for 20 

seconds as close to the wing as possible to avoid exposing the female to UV light. (F) 

Completed wing transplant of the female's left forewing. In the example shown, a male C. 

maculata wing is transplanted onto a female C. maculata for the purpose of showing 

color contrast. In experimental manipulations, females only received wings from other 

females. 
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Tent Experiments 

 

 To determine the mating preferences of sympatric Calopteryx males, we 

conducted tent experiments along the Au Sable River in Grayling, MI (5973 W M-72 

Hwy, Grayling, MI 49738). Sympatric Calopteryx males were given a choice of dark- 

and light-winged females (Figure 3). Sympatric C. aequabilis males were presented with 

unmanipulated sympatric C. aequabilis and C. maculata females. No additional trials 

were performed with C. aequabilis males due to the lack of mating attempts. We 

conducted five experimental treatments with Sympatric C. maculata males: 1. 

unmanipulated sympatric C. aequabilis x C. maculata females; 2. sympatric C. 

aequabilis x C. maculata females with heterospecific wings; 3. sympatric C. maculata 

females, with either allopatric or sympatric C. aequabilis wings; 4. sympatric C. 

aequabilis females, with either allopatric or sympatric C. aequabilis wings; 5. sympatric 

C. maculata females, with sympatric C. aequabilis or C. maculata wings (Table 1).   

 

Figure 3. Female wing types used in the mate choice experiments. Image A (sympatric 

C. maculata) and C (allopatric C. aequabilis) display the dark female wing types, and 

image B (allopatric C. aequabilis) displays the light female wing type.  

 

We conducted all trials, consisting of 5 treatments, in 10’x10’ (~ 3m x 3m) 

Coleman screenhouse tents. Each tent contained a 1.2m diameter plastic wading pool 

with river water submerged vegetation for potential oviposition habitat. Tents were 

placed immediately next to the 100m stretch of the Au Sable River chosen for the 

experiments, where there were active male territories and perch sites (Figure 4). The tents 
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were staked down in corners, and the screen edges were held down with logs or rocks to 

prevent damselflies from escaping and predators from entering (e.g. frogs).  

 

 
Figure 4. Location of the screenhouse tents used for Calopteryx mate choice 

experiments. All tents were set up along a 100m stretch of the Au Sable River in 

Grayling, MI. 

 

Trials were conducted under ideal weather conditions only (sunny, temperatures 

above 20°C, and low wind speeds). If females did not require wing grafts, they were 

collected the morning of the trial. If the females required wing grafts, they followed the 

procedure as stated previously. Males were collected nearby and placed in each tent after 

marking them individually with UV-reactive fluorescent powder on their terminal 

claspers. This powder, either blue, green, orange, pink, or yellow, was transferred to the 

females upon tandem formation and was used to identify mate choice by individual 

males. No more than five males, each with a unique color marking, were placed in a tent 

to ensure independent samples. The males were left to acclimate in the tents for at least 5 

minutes before females were added. The number of females varied between 4–10 in each 

tent, depending on availability, but there were always equal numbers of each female type 

(e.g. dark and light wings), and all females within each tent were treated the same (all 

manipulated or all unmanipulated). The damselflies were left to mate during active 
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Calopteryx mating times (~1000 – 1900 hrs), for an average of nine hours and then 

collected from the tents and stored in the freezer in individual glassine envelopes until 

analyzed. 

To compare body and wing differences between the female types in each 

treatment, all females used in the tents were imaged using a Doxie® flatbed scanner with 

a ruler before analysis. The damselflies were placed flat on their back in the scanner, with 

wings spread and held in place using small rectangular glass pieces. 

 

Tether Experiments  

 
To determine the mating preferences of Calopteryx males in a more natural 

setting than tents, we also conducted tether experiments in the streams at both allopatric 

and sympatric populations. Tether experiments were conducted at three locations: Au 

Sable River, Bertrand Creek, and Smith Creek (Figure 1). In each trial, two manipulated 

females, with either light or dark wings, were presented to Calopteryx males in the stream 

(Figure 3). We collected females from the experimental sites and the wings were 

manipulated in the same way as the tent experiments (Appendix A, Figure 2). Allopatric 

C. aequabilis males were given one treatment, allopatric C. maculata males were given 

two treatments, and sympatric Calopteryx males were given four treatments (Table 1). 

We tethered the females at the base of their abdomen using a slip knot made of 

nylon light-weight fishing line (SpiderWire Ultimate-Mono 10lb), a common method 

used in damselfly mating behavior studies (Miller and Fincke, 1999; Andrés et al., 2002; 

Iserbyt and Van Gossum, 2011; Schultz and Fincke, 2013). Female pairs were used in no 

more than three trials to avoid unintentional bias. Each female was tethered to the center 

of a floating platform comprised of a Nymphaeaceae (water lily) or Platanus occidentalis 

(sycamore) leaf on top of a Styrofoam block. We anchored the platforms to nearby sticks, 

branches, or plants in the stream using the lightweight fishing line. In each trial, 

platforms were placed approximately 20cm apart in active mating sites to ensure both 

female options were visible to males. Sites were selected based on at least one observed 

Calopteryx male guarding a territory, and an abundance of plants for oviposition. To 

video record each trial, we placed a camera (Nikon Coolpix W100) at standard settings 

about one meter away from the tether platforms on a tripod.  



  9  

 

 

Trials began after the males returned to activity in the mating site following setup. 

Each trial lasted approximately five minutes. At the start of each trial, we recorded the 

total number of damselflies within a 3m radius, recording species and sex. All trials were 

observed from five meters away. For each trial, we quantified three mating behaviors, 

including the total number of courtship attempts (males “dancing” or displaying his 

wings to a female), the number of mating attempts (males attempting to clasp a female 

around the prothorax), and the number of tandem formations (males who successfully 

clasped a female around the prothorax). All mating sites were at least 10m apart, and sites 

were not used more than once. To ensure independent male choice measurements, the 

second male who responded to the trial was counted in the analysis only if the first male 

was observed leaving the mating site or if it was collected.  

 

Species Comparisons  

 
To better understand the composition of the sympatric Calopteryx populations at 

our study sites, we determined the ratio of C. aequabilis to C. maculata through visual 

encounter surveys. We conducted surveys from June 30th to July 7th, 2018 along a 100m 

stretch of the Au Sable River. Surveys were conducted between 800 – 1800hrs at the 

same location. Surveys lasted approximately 15min and were conducted by two 

observers, multiple times per day. The abundance of each species and sex was recorded, 

as well as the temperature at the time of each survey using a Kestrel 3000 Weather Meter.  

To verify observed differences between Calopteryx females, we compared body 

length, wing length, and wing intensity. Females from allopatric and sympatric 

populations were scanned using a portable flatbed scanner with a scaling ruler attached. 

The damselflies were placed flat on their back and held in place using small rectangular 

glass pieces. All scanned females were measured in terms of body length, wing length, 

and wing intensity in ImageJ. Body length measured from the center of the thorax to the 

tip of the abdomen. Wing length measured from the connection point on the thorax to the 

furthest tip of the wing. Wing intensity was the greyscale measure of a random ~0.25 x 

0.25cm area of each wing. For each female, wing length and wing intensity was an 

average of all four wings. 

 



  10  

 

 

 



  11  

 

 

 

Data Analysis 

 
To measure mate preferences in the tent experiment, I recorded the transfer of 

fluorescent powder from males to females during tandem formation. While tandems do 

not always lead to successful copulation in Calopteryx (Oppenhiemer and Waage, 1987), 

they do show intent to mate (Battin, 1993) and therefore indicate male mating preference. 

The fluorescent powder transferred to females was easily visible using a UV light in a 

dark room or dark box, even after females were stored in the freezer. Since each male 

was marked with a unique color, the specific male that formed a tandem could be 

determined. Of the total number of males who mated in all tents of the same treatment, 

the proportion of males preferring dark-winged females was determined. A binomial test 

for each treatment and combined treatments were conducted in R-3.5.3. Males were 

excluded from the analysis if no preference was shown, meaning the male did not attempt 

to mate, as our goal was to measure preference relative to female wing pigmentation, not 

male mating inclination. Additionally, all males showing preference for both wing types 

were noted in the results, but not included in the binomial test do to the restriction of the 

test.  

To measure mating preferences in the tether experiments, any courtship, mating 

attempt, or tandem formation by males for a specific female type was used as an 

indication of male mating preference. Due to small sample size, all tether treatments were 

combined, so no female type differences were measured. Similar to the tent experiments, 

males were excluded from the tether analysis if no preference or preference for both wing 

types were shown. We conducted Fisher’s Exact Tests in R-3.5.3 to compare the wing 

preferences of C. aequabilis and C. maculata from allopatric and sympatric populations 

Species and sex ratios along the Au Sable River were determine by averaging the 

all survey abundances in terms of species and sex. We compared the average total 

abundance of C. aequabilis and C. maculata using two-tailed t tests in R-3.5.3. 

Abundances were also compared between C. aequabilis and C. maculata in terms of 

males and females. 

Female body and wing comparisons were made using two-tailed t-test in R-3.5.3. 

We excluded females from the analysis if accurate measurement could not be made (i.e. 
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female was damaged). Average body length and wing length was compared between C. 

aequabilis and C. maculata females. Additionally, wing intensity was compared between 

allopatric C. aequabilis, sympatric C. aequabilis, and sympatric C. maculata females. A 

Levine’s test of equal variance was also run to compared female wing intensity variance 

between allopatric and sympatric C. aequabilis populations. 

 

Results 

 

Tent Experiments 

 

None of the 30 sympatric C. aequabilis males used in the tent experiments formed 

tandems with females. However, of the 168 sympatric C. maculata males in the tent 

study, 47 showed a preference for either dark- or light-winged females. Because our aim 

was to measure male preference of dark versus light-winged females, and not overall 

mating inclination, we show the results of males who indicated a single preference. 

However, the proportion of males who responded in each treatment ranged from 24% to 

39% but were not statistically different between any treatment, including between the 

treatment with unmanipulated females and any of the treatments with manipulated 

females (pairwise Z-tests: z > 1.8, p > 0.07 for all). Two males showed preference for 

both female types and were therefore excluded from this analysis.  

The results of male sympatric C. maculata mate choice in the tent experiments are 

shown in Table 2. The sample sizes of females and males tested in each treatment varied. 

C. maculata males significantly preferred dark-winged females, regardless of whether the 

female bodies or wings were heterospecific or conspecific. Binomial tests indicate that 

87.5% of sympatric C. maculata males preferred the unmanipulated sympatric C. 

maculata females over C. aequabilis (Treatment 3; p = 0.031). Only 2 males responded 

when given a choice of sympatric females with heterospecific wings (Treatment 2), and 

although both preferred the dark-winged C. aequabilis females with sympatric C. 

maculata wings, the same size was too small to analyze. When given only C. maculata 

females with either dark conspecific or light heterospecific sympatric manipulated wings 

(Treatment 3), 85.7% of the males preferred the dark-winged females (p = 0.006). When 

given C. maculata females with allopatric and sympatric C. aequabilis wings (Treatment 

4), 75% preferred C. maculata females with dark wings (p = 0.109). Similarly, 86.7% of 
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males preferred the dark-winged over light-winged C. aequabilis females (Treatment 5; p 

= 0.003). 

I also compared C. maculata male preference based on female wing type by 

combining treatments according to female wing type, regardless of species or population 

type on which the wings were placed. Binomial tests indicate that 87.5% of males 

significantly preferred females with dark, sympatric C. maculata over light, sympatric C. 

aequabilis wings (p < 0.001; Table 2). Similarly, 82.6% of males significantly preferred 

females with dark, allopatric over light, sympatric C. aequabilis wings (p = 0.001; Table 

2). If all treatments are combined, 85.1% of males preferred dark-winged over light-

winged females (p < 0.001; Table 2).  
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Tether Experiments 

 

  The tether experiments included mate choice behavior from both C. maculata and 

C. aequabilis males and were analyzed in the same way as the tent experiments, using the 

percentage of responding males that chose one of two female types. The total number of 

males showing a single preference were 8 sympatric and 28 allopatric males (Table 3). 

Four C. aequabilis males, one in allopatry and 3 in sympatry, showed preference for both 

female types and were therefore excluded from the analyses.  

Due to the small sample size within each treatment type, all tether treatments were 

combined to examine male preference for light versus dark wings. These within-

treatment samples sizes, however, are reported here with reference to the treatment 

number of Table 1 in the Methods. In the allopatric C. aequabilis population, 14 males 

responded to the model, with 12 preferring the allopatric C. aequabilis females with 

allopatric C. aequabilis wings (Treatment A1). In the allopatric C. maculata population, 

14 males also responded to the model, with all 14 preferring the dark-winged female 

type: nine males preferred allopatric C. maculata females with allopatric over sympatric 

C. aequabilis wings (Treatment M1) and five males preferred allopatric C. maculata 

females with sympatric C. maculata over C. aequabilis wings (Treatment M2). 

In the sympatric populations, 5 C. maculata and 3 C. aequabilis males responded 

to the tether experiments. All C. maculata males preferred the dark female wing types: 

one male preferred C. maculata females with sympatric C. maculata over C. aequabilis 

wings (Treatment 3), two males preferred C. aequabilis females with allopatric over 

sympatric C. aequabilis wings (Treatment 4), and two males preferred sympatric C. 

maculata females with allopatric over sympatric C. aequabilis (Treatment 5). In contrast, 

all three C aequabilis males preferred the light female wing types: two males preferred 

sympatric C. aequabilis females with allopatric over sympatric C. aequabilis wings 

(Treatment 3) and one male preferred sympatric C. maculata females with sympatric 

over allopatric C. aequabilis wings (Treatment 5).  

Male preferences in the tether experiment are summarized in Table 3. Fisher’s 

exact tests indicate that sympatric and allopatric C. aequabilis males differ significantly 

in female wing preference, with allopatric males preferring dark wings (p=0.0147) and 

sympatric males preferring light wings (p=0.0178). This was not the case between 
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sympatric and allopatric C. maculata males, which both prefer dark-winged females 

(p=0.999). The allopatric populations of both C. aequabilis and C. maculata similarly 

prefer dark-winged females (p=0.4815).  

It is important to note that one allopatric and three sympatric C. aequabilis males 

displayed preferences for both female types. The allopatric male first approached the 

dark-winged female and attempted to form tandem. Due to an alignment issue from wing 

manipulations, that particular dark-winged female was unable to form tandem with the 

male. After two mating attempts with the dark-winged female, the male switched his 

attention to the light-winged female. In the sympatric populations, the three C. aequabilis 

males showed a preference for both dark- and light-winged females in the form of a brief 

courtships of wing displays. Due to the lack of a distinguishable preference, these males 

were excluded from the analysis. 

 

Species Comparisons  

 

Population composition surveys along the Au Sable River showed the average 

abundance of C. maculata was significantly greater than C. aequabilis (df = 27.868, t = 

5.2086, p < 0.0001), occurring at an average ratio of 2.4 C. maculata to 1 C. aequabilis. 

When examined just in terms of sex, a significant difference was found between the 

average abundance of C. maculata and C. aequabilis males (df = 25.825, t = 7.1056, p < 

0.0001), but not females (df = 36.528, t = 0.1656, p = 0.8694; Figure 5).  

Within females, C. maculata have significantly shorter bodies (df = 181, t = 

19.182, p < 0.0001) and wings (df = 130, t = 14.041, p < 0.0001; Figure 6). Looking at 

females by population, wing intensity significantly differed between sympatric C. 

aequabilis and C. maculata females (df = 150, t = 23.454, p < 0.0001). Wing intensity 

quantified as the average greyscale measure of females wings also differed between 

allopatric C. aequabilis females and both sympatric C. aequabilis (df = 134, t = 27.742, p 

< 0.0001) and C. maculata (df = 96, t = 8.548, p < 0.0001; Figure 6). The variation in 

wing intensity between allopatric and sympatric C. aequabilis females was also shown to 

be significantly different. Allopatric C. aequabilis had a standard deviation of 14.92, 

while sympatric C. aequabilis had a variation of 6.98 (F43,40 = 0.219, p < 0.0001). 
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Table 3. Number of males responding to female choices in the tether experiments. 

Population preference ratios are displays in terms of males showing a preference for 

dark-winged to light-winged females. The p-values are from Fisher’s Exact Tests of the 

male preferences of dark and light wings in four comparisons, between populations and 

species. 

Species 

Population Preference 

 (dark wings: light wings) p-value 

Allopatric  Sympatric 

C. aequabilis 

Males 
12:2 0:3 0.0147* 

C. maculata Males 14:0 5:0 0.9999 

p-value 0.4815 0.0178*  

* indicates a significant p-value with α = 0.05 
 

 

 

 
Figure 5. Relative abundance of C. aequabilis (CA) and C. maculata (CM) along the Au 

Sable River shown in terms of species and sex. The average abundance of each ground is 

denoted by the X. Significant differences between CA and CM pairs were determined 

using a two-tailed t test with α = 0.05 are denoted with a star (*).   
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Figure 6. Average body length, wing length, and wing intensity of C. maculata (CM) and 

C. aequabilis (CA) females. Wing Intensity was examined separately in sympatric (Sym) 

CM, Sym CA, and allopatric (Allo) CA females.  

 

Discussion 

   

Tent Experiments 

 

 To evaluate male mating preferences of female wing color, I first conducted tent 

experiments in sympatric populations. C. aequabilis and C. maculata females differ in 

body and wing size (Figure 6), therefore I manipulated the wing pigmentation by cutting 

and pasting wings between females. In the tent treatments, I provided males with a choice 

of two female types to identify whether males showed mate preference, and if so, on what 

trait in particular. In these trials, only C. maculata males behaved naturally and formed 

tandems with females, while C. aequabilis males would not respond. Therefore, the 

mating preferences of C. aequabilis males could not be determined using this method. In 

all tent treatments, C. maculata males consistently showed a preference for dark-winged 

females, regardless of which species the wings came from and on which species they 

were glued. Though two males did show a preference for both female types, both males 

attempted to mate with two dark-winged and one light-winged female (Table 2; Figure 

6). Interestingly, males were equally willing to mate with heterospecific females, and 

they preferred heterospecific females with dark wings from allopatric heterospecifics 
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(Table 2). This mating behavior indicates that male C. maculata would readily court 

dark-winged heterospecific in sympatric populations, which is presumably a selection 

pressure that led to the evolution of light-winged C. aequabilis females in sympatry.  

The conclusion of these tent experiments supports previous results published by 

Waage (1975), which showed that C. maculata males prefer dark-winged females and 

that C. aequabilis males do not respond in mate choice trials in artificial settings. The 

reason C. aequabilis males failed to respond is unknown. There may be behavioral 

difference between the two Calopteryx species. C. aequabilis males are very site specific 

(Conrad & Herman, 1990), and therefore may not have been willing to mate when 

removed from their territory. In contrast, some C. maculata males are not territorial 

(Waage, 1979a) and perhaps are more willing to respond to females in tents. 

Additionally, though the mate choice trials by Waage (1975) were not in tents, perhaps C. 

aequabilis males are more discerning about female behavior, as dead females were used. 

 

Tether Experiments 

 

The goal of the tether experiments was to conduct similar trials outside of a tent, 

to encourage male C. aequabilis to respond within their active mating territories. The 

method and experiments were successful, as both C. aequabilis and C. maculata males 

responded to tethered females (Table 3). The results of the tether experiments supported 

the prediction that C. aequabilis male mating preferences would differ between sympatric 

and allopatric populations, and their preference would mate local wing color of 

conspecific females. Both C. aequabilis and C. maculata males preferred dark-winged 

females in allopatry, which matches the color of local conspecific females (Table 3; 

Figure 5). In sympatry however, C. maculata males preferred dark-winged females and 

C. aequabilis males preferred light-winged females, which also match the wing 

pigmentation of local conspecific females (Table 3).  

Surprisingly, all the males who showed a preference for both female types and 

were excluded from the analysis were C. aequabilis males. This behavior may hint at a 

hierarchy of mating behaviors and differences in preference strengths that should be 

included in future studies. 
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Asymmetries in Reproductive Character Displacement 

 

Asymmetries in reproductive character displacement exist when one sympatric 

species shows greater divergence than the other, due to different selection pressure 

(Cooley, 2007). This asymmetric divergence has been seen in many systems (Smadja & 

Ganem, 2005; Jaenike et al. 2006; Pfenning & Stewart, 2010), including C. aequabilis 

and C. maculata. While sympatric female C. maculata show some signs of divergence, it 

is less pronounced than C. aequabilis (Waage, 1975; Waage, 1979b). The reason for this 

asymmetry is likely due to due to differences in population abundances that cause 

different strengths of selection on species recognition. Along the Au Sable River, C. 

maculata are significantly more abundant than C. aequabilis (Figure 5). This difference 

in abundance is specifically due to males and not females, as females of the two species 

occur along the river at a 1:1 ratio. Males on the other hand, occur at an approximate 4:1 

ratio of C. maculata to C. aequabilis. This difference in male abundance can put a greater 

pressure on C. aequabilis males to identify the correct females because they are more 

likely to encounter a heterospecific females. Additionally, C. aequabilis females are 

under greater pressure to be accurately recognized, as they are more likely to be harassed 

by heterospecific males (Waage, 1975). This reasoning is supported by studies on 

sympatric species, which show that the more abundant species is less influenced by 

sympatric selection pressures (Cooley, 2007). In this study, both species of males were 

willing to court and form tandems with heterospecific females (Tables 2 and 3). Future 

studies could examine the likelihood of interaction that females experience with males of 

each species, given their relative abundances in the population. 

It is interesting to note that the wing intensity variation of allopatric C. aequabilis 

females was significantly greater than the variation in sympatric female C. aequabilis 

(Figure 6). As selection pressures act on the wing color of sympatric C. aequabilis 

females, it is expected that variation of that trait within the population would decrease 

(Hill & Mulder, 2010).  

 While coevolution of mating traits and mating preferences has been observed in 

many systems exhibiting reproductive character displacement (Uy & Borgia, 2000; 

Schwartz & Hendry, 2007; Grace & Shaw, 2011), little is known about how this 

displacement arose. Studies are needed to determine if divergence in male preferences 
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drove changes in female traits, or if a divergence in female traits drove a change in male 

preferences. Additionally, it is still unknow if these male mating preferences are inherited 

or learned behaviors. Measurements of male mating preferences throughout a breeding 

season could help us understand whether male mate choice changes as males learn which 

females are conspecific. Finally, additional studies are needed to determine the effects of 

population ratios on selection pressures. Though asymmetries have been observed in this 

system, direct studies of how species abundances affect selection pressures could help us 

understand the evolution of species differences.  

 

Conclusion 

 

 Through manipulation of female wings in mate choice experiments, this study 

shows that males use female wing pigmentation for species identification. Divergence of 

female wing color in sympatric populations led to the hypothesis that reproductive 

character displacement acts on female wing pigmentation (Waage, 1979b), but this 

hypothesis was not tested directly in mate choice trials with both species of males. By 

comparing female wing color preferences of Calopteryx males between allopatric and 

sympatric populations, this study supports our predictions that male mating preferences 

would correspond to female character displacement. Here we provide direct evidence that 

reproductive character displacement is acting within this North American Calopteryx 

system, and that both female wing color and male mate preference of sympatric C. 

aequabilis have diverged to improve species recognition. 
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Appendix 

 

The wing manipulation procedure was as follows: 

1. Wing length of manipulated female were roughly measured using a ruler and 

recorded. 

2. From the wing supply, a new wing set was selected similar in size to the 

original wing set.   

3. Wings from the frozen supply were cut off using a razor blade as close to the 

body as possible. 

4. Live female damselfly was placed on her back with her wings open and flat on 

the table (Figure 3A).  

5. A small weight, such as a microscope slide, was used to hold down the wings 

of the damselfly being manipulated during the procedure (Figure 3B).  

6. One wing was manipulated at a time to ensure the proper forewing or 

hindwing was attached. 

7. To manipulate the wing, a razor blade was used to cut most of the wing off, 

leaving a small portion of the wing, roughly eight wing cells in length (~ 

4mm). 

8. The bottom rows of cells were also removed from the small remaining portion 

of wing, so that only the top two rows of wings cells remained. 

9. A small amount of light-weight UV curing glue was applied to the tip of the 

new wing. 

10. A new wing was then placed over the remaining portion of the damselfly 

wing, so that the wings cells were precisely aligned (Figure 3C and 3D).  

11. The new wings were secured by holding a small UV light directly over the 

attachment point for approximately 20 seconds (Figure 3E).  

12. To minimize the chance of UV radiation to manipulated female, the UV 

curing light was placed directly over the wings, and not the body.  

13. To ensure the new wing was securely attached, the wing was tugged slightly 

with forceps, then the wing was complete (Figure 3F). 

14. Steps 7-13 were repeated for each wing.   
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