
James Madison University
JMU Scholarly Commons

Senior Honors Projects, 2010-current Honors College

Spring 2019

A study of the effect of memory system
configuration on the power consumption of an
FPGA processor
Adam Blalock

Follow this and additional works at: https://commons.lib.jmu.edu/honors201019
Part of the Systems Architecture Commons

This Thesis is brought to you for free and open access by the Honors College at JMU Scholarly Commons. It has been accepted for inclusion in Senior
Honors Projects, 2010-current by an authorized administrator of JMU Scholarly Commons. For more information, please contact
dc_admin@jmu.edu.

Recommended Citation
Blalock, Adam, "A study of the effect of memory system configuration on the power consumption of an FPGA processor" (2019).
Senior Honors Projects, 2010-current. 652.
https://commons.lib.jmu.edu/honors201019/652

https://commons.lib.jmu.edu/?utm_source=commons.lib.jmu.edu%2Fhonors201019%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/honors201019?utm_source=commons.lib.jmu.edu%2Fhonors201019%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/honors?utm_source=commons.lib.jmu.edu%2Fhonors201019%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/honors201019?utm_source=commons.lib.jmu.edu%2Fhonors201019%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=commons.lib.jmu.edu%2Fhonors201019%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/honors201019/652?utm_source=commons.lib.jmu.edu%2Fhonors201019%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dc_admin@jmu.edu

A Study of the Effect of Memory System Configuration on the

Power Consumption of an FPGA Processor

An Honors College Project Presented to

the Faculty of the Undergraduate

College of Integrated Science and Engineering

James Madison University

by Adam P. Blalock

May 2019

Accepted by the faculty of the Department of Computer Science, James Madison University, in partial fulfillment of
the requirements for the Honors College.

FACULTY COMMITTEE:

Project Advisor: Dee A. B. Weikle, Ph.D.
Associate Professor, Computer Science

Reader: Michael O. Lam, Ph.D.
Assistant Professor, Computer Science

Reader: Michael S. Kirkpatrick, Ph.D.
Associate Professor, Computer Science

HONORS COLLEGE APPROVAL:

Bradley R. Newcomer, Ph.D.,
Dean, Honors College

PUBLIC PRESENTATION

This work is accepted for presentation, in part or in full, at Computer Science Department Research Seminar on

April 19, 2019.

Contents

1 Introduction 6

2 Related Work 11

3 Methodology 13

3.1 Hardware Description Languages and FPGAs 13

3.2 BabyRisc 14

3.3 Design 1: Main Memory Only 16

3.4 Design 2: L1 Caching and Main Memory 18

3.5 Design 3: L1 and Victim Caching 20

3.6 Testbench and Program 24

3.7 Power Estimation 28

4 Results 29

5. Future Work 36

6. Conclusion 37

A Verilog, Block Diagrams and Simulation Settings 38

B Future Work Example Code 85

2

List of Figures and Tables

1 Direct-mapped Cache Hit Demonstration 9

2 A Block Diagram Demonstrating the Design of BabyRisc 15

3 A State Machine Diagram for BabyRisc's Main Control Unit 16

4 A Block Diagram Demonstrating a BabyRisc System with Main Memory 17

5 Block Diagram for a BabyRisc System with Main Memory and L1 Caching 19

6 State Machine Diagram for the Cache Memory Controller in Figure 5 20

7 Block Diagram for a BabyRisc System with Main Memory, L1 Caching and Victim Caching 22

8 State Machine Diagram for the Cache Memory Controller in Figure 7 23

9 Timing Demonstration of a Victim Cache Swap 24

10 Vivado Behavioral Simulation Diagram 30

11 Simulation Cycles and Time to Completion 31

12 Power Reporting Results for the Main Memory Only Design 32

13 Power Reporting Results for the L1 Caches Only Design 32

14 Power Reporting Results for the L1 and Victim Caches Design 33

15 A Comparison Between Similar Modules in each Design 33

16 Comparing the Products of Estimated Power and Execution Time 34

3

Acknowledgements

I would like to thank Dr. Dee Weikle for inspiration and for help with planning and scheduling, Dr.

Michael Lam and Dr. Michael Kirkpatrick for advising and for proofreading written materials, and my

friends and family for their frequent emotional support and encouragement. Funding was provided by

the Spring 2018 CISE Scholarship and Teaching Grant awarded to Dr. Kirkpatrick, Dr. Lam and Dr.

Weikle for equipment, including PYNQ-Z1 FPGA boards.

4

Abstract

With electrical energy being a finite resource, feasible methods of reducing system power

consumption continue to be of great importance within the field of computing, especially as computers

proliferate. A victim cache is a small fully associative cache that “captures” lines evicted from L1 cache

memory, thereby reducing lower memory accesses and compensating for conflict misses. Little

experimentation has been done to evaluate its effect on system power behavior and consumption. This

project investigates the performance and power consumption of three different processor memory

designs for a sample program using a field programmable gate array (FPGA) and the Vivado Integrated

Development Environment. One design has no caching whatsoever, one utilizes separate direct-mapped

L1 instruction and data caches, and the last utilizes both direct-mapped L1 and smaller fully associative

victim caches for both instructions and data. Each of these was given the same simple testbench

program, compiled from C, disassembled, and translated into RISC-V machine code. The number of

clock cycles for execution and power estimations provided by the Xilinx Vivado Integrated

Development Environment were compred for a testbench program. The ratio of power over time

showed a significant benefit in both power consumption and performance for the system with ony L1

caches, not not an overall benefit from including victim caches. However, other instruction streams that

cause more conflict misses may still benefit.

5

1. Introduction

With electrical energy being a finite resource, feasible methods of reducing system power

consumption continue to be of great importance within the field of computing, especially as computers

proliferate. Energy-saving solutions exist for users, such as powering down when not in use, or the

replacement of Cathode Ray Tube monitors with less power-hungry Liquid Crystal Displays. Timed

auto-dimming, brightness sliders and sleep mode are ubiquitous in portable devices or monitors. Some

machines have power vs. performance sliders built into their operating systems.

In the last decade, hardware has benefitted from experiments with transistor and materials design

that have yielded both improved system performance at lower operating voltages and methods of

balancing lower power and higher performance based on needs. Architecture techniques such as

“drowsy-caching” and “sub-banking” with branch predictors [6] and its resources show that innovative

processor designs can reduce energy consumption and potentially improve performance.

1.1 Caching

A large part of energy expenditure within computer systems is due to delays between

communicating system components. The Central Processing Unit (CPU) of a computer system operates

on data held in system memory, but affordable memory technologies often work at a substantially

slower rate, leaving the CPU doing practically nothing while waiting for the requested data. Faster

memory technologies such as Static Random Access Memory (SRAM) close the timing gap, but are

substantially more expensive. To get more performance for less cost, smaller, faster memories closer to

6

the CPU hold data from larger, slower ones which are further away, forming a memory heirarchy. Most

of the time programs execute from the smaller memory, exhibiting high locality. The smaller SRAM-

based memories usually reside in the CPU, are known as caches, and hold several multiple-byte copies

of data from lower levels known as “lines.” When the CPU requests to operate on data from a specific

address in memory, a controlling circuit for the closest cache looks for a copy of the requested data. If

it is not found, an event known as a cache miss, it forwards the request to the next level down and so

on. Once found, an event known as a cache hit, the data is sent back up as each memory unit in the

chain makes its own local copy for future use. The smaller size of caches means that existing lines must

be replaced to make room for new ones, and the replaced lines may have been changed as part of

execution. To preserve consistency, in most caching implementations lines are copied back down to

lower levels upon being replaced. By using caches, immediately relevant data is made faster for the

CPU to obtain, and reduces the time retrieving less relevant data from main memory. The hierarchy is

known to benefit systems by saving time, but its effect on energy consumption is trickier. Each memory

layer is another piece of hardware, so consideration must be given as to whether or not the energy

expended by the additional hardware is less than the energy lost to CPU idle time.

One factor that affects the performance and usefulness of a cache is its associativity. Cache lines

are held in units called sets. Caching divides binary request addresses into three segments. The “offset”

segment indicates which byte in a line is requested and is comprised of the rightmost log2(bytes per

line) bits of the address. The “index” segment determines which set a given line must reside in, and is

comprised of the next log2(sets in cache) bits of the address. The “tag” segment is used to uniquely

identify the lines in a given set, and is comprised of the remaining bits. Direct-mapped caches hold

7

exactly one line per set, whereas an “n”-way associative cache holds “n” lines per set. Direct-mapped

caches utilize simpler designs, but in the case that two frequently referenced addresses belong to the

same set, they may be copied in and out over and over, a phenomenon known as “thrashing” that

wastes a lot of time and subsequently power. By holding multiple lines, associative caches are less

prone to thrashing, but depending on the associativity and policy for choosing which line in a given set

to replace the designs can be substantially more complex and slower than their direct-mapped

counterparts.

Figure 1 demonstrates a direct-mapped cache access. The cache has four-byte lines and eight sets,

therefore the address is divided into a 2-bit offset, 3-bit index and 27-bit tag. The index 101 indicates

set five as the search set. Since the tag in set 5 matches, it is a cache hit and the byte at offset 1 is

retrieved.

8

Figure 1. Direct-mapped Cache Hit Demonstration

A victim cache, proposed in [5], is a relatively small but fully associative cache placed between the

highest “L1” cache and lower memory layers. It “captures” lines evicted from L1 cache memory,

thereby reducing lower memory accesses and compensating for conflict misses. Their small size in

comparison to other cache layers make them worth exploring for use in both high-performance and

embedded systems. Victim caching has been shown to improve performance, yet little experimentation

has been done to evaluate its effect on system power behavior and consumption. This project

implements two memory heirarchy designs, one with a victim cache and one without in a Field

Programmable Gate Array (FPGA) to gain instight into this question.

9

1.2 Project Goals

The intent is to estimate how the use of caching affects power consumption when applied to

FPGA-based RISC-V based Systems on a Chip (SoC). RISC-V is an open-source Instruction Set

Architecture (ISA), a standardized specification for the binary machine code instructions a CPU is

capable of decoding and executing. [9] Three SoCs are compared, one with no caching, one with

separate L1 instruction and data caches, and one with L1 and victim instruction and data caches, all

designed in Verilog. After simulating and debugging these designs, power estimation tools are used to

compare performance and power behavior for a given RISC-V program.

10

2. Related Work

Canturk Isci and Margaret Martonisi [4] propose a power measurement framework adapted from

phase-based performance analysis. The instrumentation tool Pin was used to dynamically inject the

SPECCPU 2000 benchmark suite with calls to an analysis program known as a pintool. The CPU

running these benchmarks, an Intel Pentium 4 with a Linux Kernel, housed a unit for measuring the

frequency of events such as executions and cache accesses. Additionally, a current measurement probe

was placed on the CPU and the value fed back in as an input. When called, the pintool used buffered

samples of the performance counters and probe measurements to create a sample power history that

accounted for the shift in control. Execution samples were compared for similarity in order to classify

distinct execution phases for which power could be estimated.

In a follow-up paper [3], Isci and Martonosi also described a methodology for measuring power

use for individual components. A Fluke-brand ammeter and Agilent-brand digital multimeter were used

to measure power over time during the execution of similar microbenchmarks, with a sample rate of

1000 readings per second. Access rate heuristics were derived for individual components within the

CPU. L1 cache access rate was defined a function of port replays, front end events and clock cycles.

Power per component could then be calculated as a function of access rate, architectural scaling,

estimated maximum power and estimated non-gated clock power.

In [6] Kim, Flautner, Blaauw and Mudge consider the effects of transistor leakage on overall power

consumption, noting it as the primary cause of power expenditure in caches. Reducing threshold

voltage is known to reduce both leakage and performance. The report details experiments with “drowsy

11

caches,” in which lines expected to be accessed less frequently are put in a lower-voltage state until

further notice, reducing leakage temporarily while preserving values. The paper evaluates via

simulation several drowsy prediction techniques for groups of instruction cache lines called sub-banks.

Accuracy is measured as a function of correct predictions divided by the number of “wake-ups.”

The design of the memory controllers in this report are partially based on examples given in [1].

The design of the RISC-V core and caching systems are partially based on examples given in [7].

12

3. Methodology

3.1 Hardware Description Languages and FPGAs

Hardware Description Languages (HDL) are formal programming languages used to create human-

readable descriptions of computational circuitry. Verilog is a popular HDL based on C, in which

designs are created by defining hardware units called “modules,” their synchronous or asynchronous

sequential or combinational logic, memory registers, inputs, outputs, sub-modules, the wires that

connect them together, and a “top module” which binds everything together.” Although mainly used for

simulation, HDL descriptions can be translated or “synthesized” into a format usable by Field

Programmable Gate Arrays (FPGA), a type of chip that can have its structure and function configured

and is often used for experimenting with and simulating dedicated chip designs. The file used to

program a specific FPGA with a synthesized design is called a bitstream. This configuration is volatile,

meaning the bitstream must be re-loaded each time the chip is powered on. FPGA manufacturer Xilinx

provides an Integrated Development Environment (IDE) called Vivado for writing HDL and compiling

(synthesizing) it for use with their boards. One helpful feature of Vivado is the ability to abstract part of

the creation process via block diagrams, where modules are represented visually as blocks with I/O

ports. Ports can be connected by drawing lines between them, and Vivado will automatically create a

wrapper module based on the diagram. See the appendix for examples of how block diagrams help the

design process.

All HDL code for this project is developed in the Xilinx Vivado Integrated Development

Environment (IDE), written in Verilog and simulated with the built-in behavioral simulator. The

13

experiment consists of designing three variations of a memory hierarchy system and connecting them

to the same simple RISC-V-based core to compare power/performance behavior among the three.

3.2 BabyRisc

The common RISC-V core is a simplified 32-bit implementation with limited instruction support

and no pipelining. Because of its limited functionality, it has been given the name “BabyRisc.” As of

this writing, BabyRisc only supports aligned loads and stores, doubleword size Arithmetic Logic Unit

(ALU) operations, branches, and a custom halt instruction comprised of all zero bits. It consists of an

instruction decoder, register file, ALU, program counter unit, and a clock-sensitive main controller.

(See Figure 2) The controller is a positive edge-triggered eight-state machine with states “ready,”

“fetch,” “decode,” “calculate,” “memory,” “writeback,” “done” and “error.” and transitions between

states taking place at the positive edge of a periodic clock signal given certain conditions (see Figure 3

for a state transition diagram). These states represent the basic loop every CPU performs in executing a

program: retrieving the next instruction from memory, determining the action to take given the

instruction, performing a mathematical calculation, reading or writing to external memory, and writing

results back to internal memory units called “registers.” In the “ready” state, this controller awaits a

start signal before transitioning into the “fetch” state, and continues the loop until a halt instruction is

encountered or an invalid instruction is read. Each state has a corresponding component, and signals

are sent upon entering states to trigger their operation. For example, the decoder component reads the

incoming instruction to determine how its outputs should be set, but only sets them when the controller

has entered the decode state. BabyRisc utilizes a byte-aligned 32-bit address space. Memory accesses

14

begin with a request signal to an external memory controller and end when a response signal is

returned. The req_type signal is used so that the cache memory controller can distinguish between

instruction and data requests. This is important as each request type causes the controller to behave

differently by branching into type-exclusive states. (See Figures 6 and 8)

Figure 2. A Block Diagram Demonstrating the Design of BabyRisc

15

Figure 3. A State Machine Diagram for BabyRisc’s Main Control Unit

3.3 Design 1: Main Memory Only

The main memory modules of the SoC behave similar to a real-world Random Access Memory

(RAM). Upon receiving a request signal, the RAM writes incoming data to the specified address if

necessary, sets the read data on output wires, and sets a response signal. However, as discussed earlier,

in real-world systems the time to access main Dynamic RAM is usually in a magnitude four to five

16

times greater than that required to access Static RAM-based caches due to differences in hardware

speed. A raw FPGA implementation would eliminate this delay since every component uses the same

hardware. To simulate this delay, the RAM modules also act like state machines so that they require

eight clock periods per operation instead of the two to four required for cache operations. Because

BabyRisc outputs instruction and data addresses as distinct signals, for simplicity’s sake the main

memory has address inputs and value outputs for both.

The following block diagram demonstrates a BabyRisc system with main memory and no caching.

The request type signal ‘req_o’ is not used in this design, as it is intended for use by a cache controller

which is not present.

Figure 4. A Block Diagram Demonstrating a BabyRisc System with Main Memory

17

3.4 Design 2: L1 Caching and Main Memory

The second design uses shared main memory and distinct caches for instructions and data. The L1

cache modules are direct mapped with a 22-bit tag, 6-bit index and 4-bit offset for a total of 1024 bytes

each. Both have inputs for address, write enable, and data from main memory, and outputs for

combined tag and index for use in cache misses, hit/miss signal, and data. The data cache has additional

inputs for write mode (regular or full line) and size (byte, half, word double), and an additional output

signal for writeback if the set already contains valid data that must be written to lower memory layers

upon replacement. The cache controller for this design does not handle data or address information

itself, but progresses from IDLE through the appropriate sequence of states based on signals from the

caches and main memory. Output signals from the controller correspond with specific states. (See

Figure 5)

For the two designs in which caching is utilized, the main memory does not accept full 32-bit

addresses, but instead accepts the 28-bit combined tag and index and operates on full 16-byte lines.

Other than this, the function of this line-addressed memory is nearly identical to that of the byte-

addressed memory.

18

Figure 5. Block Diagram for a BabyRisc System with Main Memory and L1 Caching.

19

Figure 6. State Machine Diagram for the Cache Memory Controller in Figure 5.

3.5 Design 3: L1 and Victim Caching

The third design uses shared main memory, L1 caches and victim caches. The victim cache

modules hold the 8 most recently evicted cache lines, which can be indexed and accessed in an

arbitrary order, and are replaced on a least-recently-used basis. This is done via a queue that can be

added to at the front and removed from at an arbitrary location. The L1 and victim caches are checked

20

simultaneously, and to mimic real-world systems, upon a victim cache hit lines must be “swapped”

back into the L1 cache before any further reads or writes can be performed. Any lines that are replaced

in the victim cache but not swapped back into L1 are written back to main memory.

The L1 caches work slightly differently to accommodate for this. Both data and instruction L1

caches receive an address from the BabyRisc core, parsing and passing the tag and index to the victim

caches and main memory. Since the L1 and victim caches must be able to exchange data between each

other simultaneously, the lines being written in must not change during the operation. To achieve this,

both L1 and victim caches accept a set_swap input signal, which causes the swap lines to be saved to

output registers. Simultaneous write signals are asserted one cycle later to initiate the swap.

In the case that there is a miss in both caches, writeback from victim cache, eviction from L1 cache

and read-in from main memory occur in respective order, skipping steps when not applicable. A data

writeback is only necessary if the victim cache is completely full, and an eviction from the L1 cache is

only necessary if the target set contains valid data. A read-in from main memory is always necessary

(See figure 8).

21

Figure 7. Block Diagram for a BabyRisc System with Main Memory,

L1 Caching and Victim Caching.

22

Figure 8. State Machine Diagram for the Cache Memory Controller in Figure 7.

The following is a Vivado behavioral simulation timing diagram demonstrating a successful data

request that misses in the L1 cache but hits in the victim cache. When the request from BabyRisc is

sent (mem_req), a hit in the victim cache has already been found. A few cycles of the clock later, the L1

and victim caches are set to swap lines (set_swap) and those lines are exchanged. Afterwards, the hit is

in the L1 cache (dmc_hm) and a response is sent from the memory controller one cycle later.

23

Figure 9. Timing Demonstration of a Victim Cache Swap.

3.6 Testbench and Program

Testing the given designs requires two things: a program to run and a testbench file to drive

execution. BabyRisc begins program execution by fetching and executing the 32-bit instruction stored

at address 0x0 of memory, then sequentially until the end of execution, the exception being when

execution causes the address of the next instruction to change as part of a decision, eg. a jump. Each

testbench program is hard-coded into the main memory modules. For example, the following are a few

RISC-V instructions written in assembly language, followed by the binary representation read by the

CPU.

24

addi sp, sp, -1584 10011101000000010000000100010011
sd s0, 1576(sp) 01100010100000010011010000100011
addi s0, sp, 1584 01100011000000010000010000010011

This binary code is hard-written into the main memory module with the first instruction starting at

address 0x0. As stated before, one main memory design is byte-addressed to 32-bit addresses, while the

other is line-addressed to 28-bit combined tags and indexes. Instantiating the former memory with this

instruction for behavioral simulation takes the form

data[3] = 'b00000000;
data[2] = 'b00000000;
data[1] = 'b00000010;
data[0] = 'b10110011;

Whereas instantiating the same instruction into the latter takes the form

lines[0] = {32'b00000000000100000000111000010011,
 32'b00000000000000000000001110110011,
 32'b00010100000000000000001100010011,
 32'b00000000000000000000001010110011};

The program run for this experiment is a simple Fibonacci sequence calculator which calculates the

first 198 numbers and places them into memory. It is written in the C language and compiled using the

32-bit gcc-based compiler provided in the RISC-V organization’s official toolchain.

25

void main() {

 #include <stdbool.h>
 #include <stdint.h>
 #define size 192

 uint64_t a = 0;
 uint64_t b = 1;
 uint64_t c = 1;
 uint64_t nums [size];

 uint64_t i = 0;
 while(true) {
 nums[i] = c;
 i += 1;
 if (i == size) break;
 a = b;
 b = c;
 c = a + b;
 }
}

Running the toolchain’s object dumper shows the program’s corresponding assembly

representation. The relevant instructions are copied, modified, translated into machine code and placed

into the main memory module via Verilog statements like the examples above.

26

addi sp, sp, -1584
sd s0, 1576(sp)
addi s0, sp, 1584
sd zero, -48(s0)
addi a5, zero, 1
sd a5, -24(s0)
addi a5, zero, 1
sd a5, -32(s0)
sd zero, -40(s0)
ld a5, -40(s0)
slli a5, a5, 3
addi a4, s0, -16
add a5, a5, a4
ld a4, -32(s0)
sd a4, -1568(a5)
ld a5, -40(s0)
addi a5, a5, 1
sd a5, -40(s0)
ld a4, -40(s0)
addi a5, zero, 192
beq a4, a5, 40
ld a5, -24(s0)
sd a5, -48(s0)
ld a5, -32(s0)
sd a5, -24(s0)
ld a4, -48(s0)
ld a5, -24(s0)
add a5, a5, a4
sd a5, -32(s0)
beq zero, zero(-80)
ld s0, 1576(sp)
addi sp, sp, 1584
halt

Execution requires use of the Vivado IDE built-in simulator, used for testing Verilog designs and

utilizing three different modes. For behavioral mode, code is interpreted as written and all assignment

statements are treated as instantaneous. The two post-synthesis modes take actual hardware delay into

27

consideration, but both are ignored in favor of behavioral since using this mode is outside of the host

computer’s capability and anticipated to produce little to no additional useful information. Vivado

simulation requires the creation of testbench files, which wrap the top level modules of Verilog designs

and allow users to manipulate and monitor input and output over time. The testbench for this

experiment wraps all three SoC designs at once, providing each with a 50MHz clock and start signal

while monitoring the ready, done and error outputs. A register also counts the number of cycles passed

since the start signal was sent so that the clock cycles for completion can be compared between each

design. Time measurement for completion is taken from the beginning of simulation to the time when

the “done” signal is asserted by each SoC.

3.7 Power Estimation

Vivado also provides a built-in post-synthesis power estimation tool. By accounting for given

variables, such as ambient temperature, airflow, and input voltage, an estimate of power consumption

in watts when programmed onto an FPGA can be made. This estimation which can be aggregated on a

module-by-module basis for both static and dynamic components. For higher accuracy, Vivado can

generate usage vector files (.saif) during post-synthesis simulation which can be applied to power

estimation for improved accuracy. Due to Verilog infeasibly long post-synthesis simulation times,

however, vector-based estimation is left for future work. More information on Vivado power reporting

can be found at [10]. See the appendix for a summary of the settings used across all power estimations.

With the exception of the clock period, these are all the default settings suggested by the Vivado

estimation tool.

28

4. Results

Figure 10 is an abridged timing diagram for running the Fibonacci program on each of the three

SoCs in behavioral mode, from slightly before the start signal is asserted to slightly after the done

signals of all three are asserted. “Clk,” “rst_sig,” and “start_sig,” are inputs from the testbench to the

SoC designs; the “done,” “err,” and “ready” wires are outputs. “Clk_en” and “cycle_count” are used

exclusively by the testbench to enable the clock and count the number of cycles since starting

respectively. “Done1” corresponds to the design with no caching system in place, “done2” to the design

with L1 caches, and “done3” to the design with L1 and victim caches. The same applies for the ready

and error signals. The diagram’s scale gives the illusion that “clk” and “cycle_count” remain constant,

but in truth they change very frequently making them appear homogenous.

29

Figure 10. Vivado Behavioral Simulation Diagram.

Table 1 summarizes the number of clock cycles and execution time in milliseconds taken from the

assertion of “start” to the assertion of each respective “done” signal, assuming a clock period of 20ns

corresponding to a 50MHz clock.

30

Memory Layout Cycles to Completion Time to Completion

Main Memory Only 39388 1.680 ms

L1 Caching 15066 (24322 less) 0.566 ms

L1 and Victim Caching 14874 (192 less) 0.551 ms
Table 1. Simulation Cycles and Time to Completion

Performance comparisons are evident: The design with L1 and Victim Caching required fewer

cycles and therefore less time to execute, although not by a significant degree for this program. This is

likely due to the nature of the program used for testing, which has only three local variables that are

referenced frequently. A closer observation of simulation showed that lines were recovered from the

victim cache only ten times.

For power estimation, each design was synthesized and run through individually instead of all at

once. Tables 2-5 are a breakdown of power reporting results for each design using the default settings.

The first entries in each table are measurements for each module arranged in order from lowest to

greatest power. The last three entries on any table list the total dynamic power, the total static power,

and the combined total. Dynamic power is a measurement of power spent when a transistor moves

from a high state to a low state and vice-versa, whereas static power is a measure of leakage when a

transistor is not changing state. A higher ratio of dynamic over static power is a ratio of useful power

over wasted power, therefore based on power estimation the design with victim caches is seemingly

more power efficient in the average case.

31

Module Name / Variable Power Percentage of Total

BabyRisc 0.242 W 11.86 %

Regular Main Memory 1.649 W 80.79 %

Dynamic Power 1.893 W 92.75 %

Device Static Power 0.148 W 7.25 %

Total On-Chip Power 2.041 W 100.00 %
Table 2. Power Reporting Results for the Main Memory Only Design

Module Name / Variable Power Percentage of Total

Memory Controller < 0.001 W < 0.003 %

Instruction L1 Cache 0.013 W 3.94 %

Caching Main Memory 0.030 W 9.09 %

BabyRisc 0.046 W 13.94 %

Data L1 Cache 0.133 W 40.30 %

Dynamic Power 0.222 W 67.27 %

Device Static Power 0.108 W 32.73 %

Total On-Chip Power 0.330 W 100.00 %
Table 3. Power Reporting Results for the L1 Caches Only Design

32

Module Name / Variable Power Percentage of Total

Memory Controller < 0.001 W < 0.283 %

Caching Main Memory 0.003 W 0.85 %

Instruction Victim Cache 0.017 W 4.81 %

Data Victim Cache 0.018 W 5.10 %

Instruction L1 Cache 0.023 W 6.51 %

BabyRisc 0.053 W 15.01 %

Data L1 Cache 0.130 W 36.83 %

Dynamic Power 0.245 W 69.40 %

Device Static Power 0.108 W 30.59 %

Total On-Chip Power 0.353 W 100.00 %
Table 4. Power Reporting Results for the L1 and Victim Caches Design

Module Name Main Memory Only L1 Caching L1 & Victim Caching

BabyRisc 0.242 W 0.046 W 0.053 W

Main Memory 1.649 W 0.030 W 0.003 W

Memory Controller N/A < 0.001 W < 0.001 W

Instruction L1 Cache N/A 0.013 W 0.023 W

Data L1 Cache N/A 0.133 W 0.130 W

Instruction Victim
Cache

N/A N/A 0.017 W

Data Victim Cache N/A N/A 0.018 W

Dynamic Power 1.892 W 0.222 W 0.245 W

Device Static Power 0.148 W 0.108 W 0.108 W

Total On-Chip Power 2.041 W 0.330 W 0.353 W
Table 5. A Comparison Between Similar Modules in each Design

33

First of note is the much higher power estimate for the main memory only design. The main

memory module of the first design is responsible for approximately 80% of its power consumption. In

the other two designs, the line-addressed main memory module contributes substantially less, and the

data caches contribute substantially more. This could be due to main memory being called upon much

less frequently in the latter two designs, with the burdens being placed on the data caches. It could also

be due to a disjoint in complexity between the two main memories’ designs - a memory comprised of

2048 single-byte registers is perhaps more complex than one comprised of 128 16-byte registers.

However, observing the estimated behavior of BabyRisc brings both of these theories into question.

The above theories do not explain the variance in BabyRisc’s power behavior despite its uniform

design across all three SoCs. The fact that the BabyRisc instance in the third design has a higher

estimated power than the one in the second also implies that this difference may not be a matter of

access frequency or time until completion; if that were the case the second design would perhaps have

the greater power. The exact cause of this difference will require further testing, and is left for future

work.

Between the two designs that utilize caching, the one with victim caches is estimated to use slightly

more power. Notable, however, is that both have an identical estimated static power, yet the one with

victim caching has a higher estimated dynamic power, skewing the ratio of dynamic against static in its

favor.

Assuming power estimation of this accuracy produces average power at any given point in time,

Table 6 shows the product of power by execution time for each design.

34

SoC Design Power Estimation Simulation Execution Time Power * Time

Main Memory Only 2.041 W 1.680 ms 3.429

With L1 Caches 0.330 W 0.566 ms 0.187

With L1 and Victim Caches 0.353 W 0.551 ms 0.194
Table 6. Comparing the Products of Estimated Power and Execution Time

Although power efficiency may be increased on average for L1 and Victim Caching, for the

Fibonacci program the product of power over execution time is in favor of the design with L1 caches

only. This is likely due to the aforementioned fact that the victim cache is only accessed ten times,

saving only 192 cycles. A different test program with more active variables, and therefore more

opportunities to retrieve evicted lines, would likely produce results more favorable for the victim

caching design.

35

5 Future Work

The power gaps discovered between similar modules require further investigation. Future work

would first and foremost find the cause of this disparity, complexity or access frequency.

Experimentation with other programs should also be considered, especially those likely to utilize the

victim cache to a higher degree. One consideration was a recursive prime factorization algorithm which

required instructions not yet supported by BabyRisc. The C code and assembly for this program can be

found in the appendix.

Other future work could take an approach similar to that detailed in Isci and Martonosi’s work [3]

involving the use of power monitoring tools and usage heuristics to detail actual power behavior as

opposed to simulated power behavior. Another possibility would be to improve the accuracy of Vivado

power estimation with usage vectors from a post-synthesis simulation of the implemented design.

Synthesizing SoC designs will require modification for size and proper post-synthesis instantiation of

memories so that testing and measurement on actual hardware can be performed.

36

6 Conclusion

Running Vivado power estimation tools on three RISC-V SoCs with different memory hierarchy

designs, one with main memory only, one with L1 data and instruction caches, and one with L1 and

victim caches, showed the latter design to have a favorable dynamic to static power ratio. Although this

was not reflected in the execution of a Fibonacci sequence calculator due to its low use of the victim

cache, future work could improve the design of the hardware components, generate more accurate

power estimation via post-synthesis usage vectors, and test programs more likely to take advantage of

victim caching.

37

A Verilog, Block Diagrams and Simulation Settings

This appendix contains The Verilog code, Vivado block diagrams, and power estimation settings

used for design and simulation at the time of writing.

Verilog header for constants op_aliases.vh

parameter
 WB_SRC_ALU = 'b0,
 WB_SRC_DMEM = 'b1,

 ALU_SRC_REG = 'b0,
 ALU_SRC_IMM = 'b1,

 TYPE_R = 'b000,
 TYPE_I = 'b001,
 TYPE_S = 'b010,
 TYPE_SB = 'b011,
 TYPE_H = 'b100,
 TYPE_ERR = 'b101,

 ALU_ADD = 'b00,
 ALU_SUB = 'b01,
 ALU_SLL = 'b10,

 BRANCH_EQ = 'b000,

 OP_LOAD = 'b0000011,
 OP_ALUI = 'b0010011,
 OP_STORE = 'b0100011,
 OP_ALUR = 'b0110011,
 OP_BRANCH = 'b1100011,
 OP_HALT = 'b0000000,

 F3_ALU_ADD_SUB = 'b000,
 F3_ALU_SLL = 'b001,

 F7_ADD = 'b0000000,
 F7_SUB = 'b0100000,

 PC_OP_NEXT = 'b0,
 PC_OP_BRANCH = 'b1;

38

alu.v

module alu(
 input wire alu_src, calc,
 input wire [1:0] alu_op,
 input wire [2:0] branch_op,
 input wire [63:0] rdata_1, imm, rdata_2,

 output reg branch_ok,
 output reg [63:0] op_result
);

 `include "op_aliases.vh"

 initial op_result = 0;

 wire [63:0] opdata = alu_src == ALU_SRC_IMM ? imm: rdata_2;

 always @(posedge calc)
 case (alu_op)
 ALU_ADD: op_result = rdata_1 + opdata;
 ALU_SUB: op_result = rdata_1 - opdata;
 ALU_SLL: op_result = rdata_1 << opdata;
 default: op_result = 'b0;
 endcase

 always @(*) case (branch_op)
 BRANCH_EQ: branch_ok = (op_result == 0);
 default: branch_ok = 'b0;
 endcase

endmodule

39

decoder.v

module decoder(
 input wire decode,
 input wire [31:0] inst_i,

 output reg alu_src, data_rw, do_mem, halt, pc_op, wb_guard, wb_src,
 output reg [1:0] data_size,
 output reg [2:0] branch_op,
 output reg [1:0] alu_op,
 output reg [4:0] rd, rs1, rs2,
 output reg [63:0] imm
);

 `include "op_aliases.vh"

 initial begin
 alu_src = 0;
 data_rw = 0;
 do_mem = 0;
 halt = 0;
 pc_op = 0;
 wb_guard = 0;
 wb_src = 0;
 data_size = 0;
 branch_op = 0;
 alu_op = 0;
 rd = 0;
 rs1 = 0;
 rs2 = 0;
 imm = 0;
 end

 wire [2:0] funct3 = inst_i[14:12];
 wire[6:0] funct7 = inst_i[31:25];
 wire [6:0] opcode = inst_i[6:0];

 reg [2:0] itype;
 always @(*) case (opcode)
 OP_LOAD: itype = TYPE_I;
 OP_ALUI: itype = TYPE_I;
 OP_STORE: itype = TYPE_S;
 OP_ALUR: itype = TYPE_R;
 OP_BRANCH: itype = TYPE_SB;
 OP_HALT: itype = TYPE_H;
 default: itype = TYPE_ERR;
 endcase

 wire [1:0] data_size_next = funct3[1:0];

40

 reg [1:0] alu_op_next;
 always @(*) case (opcode)
 OP_LOAD: alu_op_next = ALU_ADD;
 OP_ALUI: case (funct3)
 F3_ALU_ADD_SUB: alu_op_next = ALU_ADD;
 F3_ALU_SLL: alu_op_next = ALU_SLL;
 default: alu_op_next = 'b0;
 endcase
 OP_STORE: alu_op_next = ALU_ADD;
 OP_ALUR: case (funct3)
 F3_ALU_ADD_SUB: case (funct7)
 F7_ADD: alu_op_next = ALU_ADD;
 default: alu_op_next = 'b0;
 endcase
 F3_ALU_SLL: alu_op_next = ALU_SLL;
 default: alu_op_next = 'b0;
 endcase
 OP_BRANCH: alu_op_next = ALU_SUB;
 default: alu_op_next = 'b0;
 endcase

 reg [63:0] imm_next;
 always @(*) case (itype)
 TYPE_I: imm_next = {{52{inst_i[31]}}, inst_i[31:20]};
 TYPE_S: imm_next = {{52{inst_i[31]}}, inst_i[31:25], inst_i[11:7]};
 TYPE_SB: imm_next = {{51{inst_i[31]}}, inst_i[31], inst_i[7],
inst_i[30:25], inst_i[11:8],
 1'b0};
 default: imm_next = 0;
 endcase

 wire pc_op_next = itype == TYPE_SB ? PC_OP_BRANCH : PC_OP_NEXT;

 wire wb_src_next = opcode == OP_LOAD ? WB_SRC_DMEM : WB_SRC_ALU;

 always @(posedge decode) begin
 // Zero for register if one of these types, otherwise 1 for immediate.
 alu_src <= (itype != TYPE_R) && (itype != TYPE_SB);
 // One if a branching type.
 // Only asserted for stores
 data_rw <= itype == TYPE_S;
 do_mem <= (opcode == OP_LOAD) || (opcode == OP_STORE);
 halt <= opcode == OP_HALT;
 // Register writes happen for all instruction types besides S and SB.
 wb_guard <= (itype != TYPE_S) && (itype != TYPE_SB);
 // Only asserted for loads
 pc_op <= pc_op_next;
 wb_src <= wb_src_next;

41

 data_size <= data_size_next;
 branch_op <= funct3;
 alu_op <= alu_op_next;
 rd <= inst_i[11:7];
 rs1 <= inst_i[19:15];
 rs2 <= inst_i[24:20];
 imm <= imm_next;
 end

endmodule

42

main_control.v

module main_control(
 input wire clk, do_mem, halt, reg_file_ready, mem_ready, mem_resp, start_sig,

 output wire calc, decode, done_o, mem_req, mem_req_type, pc_update, ready_o,
wb_sig
);

 parameter
 STATE_SETUP = 'b000,
 STATE_READY = 'b001,
 STATE_FETCH = 'b010,
 STATE_DECODE = 'b011,
 STATE_CALC = 'b100,
 STATE_MEM = 'b101,
 STATE_WRITEBACK = 'b110,
 STATE_DONE = 'b111;

 reg [2:0] state;

 initial begin
 state = STATE_SETUP;
 end

 reg [2:0] state_next;
 always @(*) case (state)
 STATE_SETUP: state_next = (mem_ready && reg_file_ready) ? STATE_READY :
STATE_SETUP;
 STATE_READY: state_next = start_sig ? STATE_FETCH : STATE_READY;
 STATE_FETCH: state_next = mem_resp ? STATE_DECODE : STATE_FETCH;
 STATE_DECODE: state_next = halt ? STATE_DONE : STATE_CALC;
 STATE_CALC: state_next = do_mem ? STATE_MEM : STATE_WRITEBACK;
 STATE_MEM: state_next = mem_resp ? STATE_WRITEBACK : STATE_MEM;
 STATE_WRITEBACK: state_next = STATE_FETCH;
 STATE_DONE: state_next = STATE_DONE;
 default: state_next = state;
 endcase

 assign calc = state == STATE_CALC;
 assign decode = state == STATE_DECODE;
 assign done_o = state == STATE_DONE;
 assign mem_req = (state == STATE_FETCH) || (state == STATE_MEM);
 assign mem_req_type = (state_next == STATE_MEM) || (state == STATE_MEM);
 assign pc_update = (state == STATE_WRITEBACK);
 assign ready_o = state == STATE_READY;
 assign wb_sig = (state == STATE_WRITEBACK) || (state == STATE_SETUP && !
reg_file_ready && clk);

43

 // State change
 always @(posedge clk) state <= state_next;

endmodule

44

pc_unit.v

module pc_unit(
 input wire branch_ok, update_pc,
 input wire pc_op,
 input wire [63:0] imm,

 output reg [31:0] iaddr
);

 `include "op_aliases.vh"

 wire [31:0] imm_trunc = imm[31:0];

 wire [31:0] branch_addr = iaddr + imm_trunc;

 initial iaddr = 0;

 always @(posedge update_pc) case(pc_op)
 PC_OP_NEXT: iaddr <= iaddr + 4;
 PC_OP_BRANCH: iaddr <= branch_ok ? iaddr + imm_trunc : iaddr + 4;
 default: iaddr <= iaddr + 4;
 endcase

endmodule

45

reg_file.v

module reg_file (
 input wire wb_guard, wb_sig,
 input wire [1:0] wb_src,
 input wire [4:0] rd, rs1, rs2,
 input wire [31:0] pc_data,
 input wire [63:0] alu_data, imm_data, mem_data,

 output wire [63:0] rdata_1, rdata_2
);

 `include "op_aliases.vh"

 wire wb_final = wb_guard && wb_sig && (rd != 0);
 reg [63:0] wb_data;
 always @(*) case (wb_src)
 WB_SRC_ALU: wb_data = alu_data;
 WB_SRC_DMEM: wb_data = mem_data;
 WB_SRC_IMM: wb_data = imm_data;
 WB_SRC_PC: wb_data = pc_data;
 default: wb_data = 'bx;
 endcase

 reg [63:0] regs [31:0];

 initial begin
 regs[0] = 0; regs[1] = 0; regs[2] = 'd2040; regs[3] = 0;
 regs[4] = 0; regs[5] = 0; regs[6] = 0; regs[7] = 0;
 regs[8] = 0; regs[9] = 0; regs[10] = 0; regs[11] = 0;
 regs[12] = 0; regs[13] = 0; regs[14] = 0; regs[15] = 0;
 regs[16] = 0; regs[17] = 0; regs[18] = 0; regs[19] = 0;
 regs[20] = 0; regs[21] = 0; regs[22] = 0; regs[23] = 0;
 regs[24] = 0; regs[25] = 0; regs[26] = 0; regs[27] = 0;
 regs[28] = 0; regs[29] = 0; regs[30] = 0; regs[31] = 0;
 end

 assign rdata_1 = regs[rs1];
 assign rdata_2 = regs[rs2];

 always @(posedge wb_final)
 regs[rd] <= wb_data;

endmodule

46

Vivado Block diagram for BabyRisc

47

regular_main_mem.v

module regular_main_mem(
 input wire clk, req, rw,
 input wire [1:0] size,
 input wire [31:0] inst_addr,
 input wire [63:0] data_addr, data_i,

 output wire resp,
 output wire [31:0] inst_o,
 output reg [63:0] data_o
);

 parameter
 BYTE = 'b00,
 HALF = 'b01,
 WORD = 'b10,
 MODE_INST = 'b00,
 MODE_DATA_RI = 'b01,
 MODE_DATA_WB = 'b10,
 IDLE = 'b0000,
 FETCH_1 = 'b0001,
 FETCH_2 = 'b0010,
 FETCH_3 = 'b0011,
 FETCH_4 = 'b0100,
 FETCH_5 = 'b0101,
 FETCH_6 = 'b0110,
 FETCH_7 = 'b0111,
 FETCH_8 = 'b1000,
 FETCH_9 = 'b1001,
 RETURN = 'b1010;

 reg [3:0] state;
 // reg [7:0] data [31:0];
 reg [7:0] data [2047:0];
 wire we = (state == FETCH_9) && rw;
 reg [3:0] state_next;
 always @(*) case (state)
 IDLE: state_next = (req) ? FETCH_1 : state;
 FETCH_1: state_next = FETCH_2;
 FETCH_2: state_next = FETCH_3;
 FETCH_3: state_next = FETCH_4;
 FETCH_4: state_next = FETCH_5;
 FETCH_5: state_next = FETCH_6;
 FETCH_6: state_next = FETCH_7;
 FETCH_7: state_next = FETCH_8;
 FETCH_8: state_next = FETCH_9;
 FETCH_9: state_next = RETURN;
 RETURN: state_next = (req) ? state : IDLE;

48

 default: state_next = state;
 endcase

 reg [11:0] init_counter;
 initial begin
 state = IDLE;

 init_counter = 0;
 while (init_counter < 2048) begin
 data[init_counter] = 0;
 init_counter = init_counter + 1;
 end

 data[3] = 'b10011101;
 data[2] = 'b00000001;
 data[1] = 'b00000001;
 data[0] = 'b00010011;

 data[7] = 'b01100010;
 data[6] = 'b10000001;
 data[5] = 'b00110100;
 data[4] = 'b00100011;

 data[11] = 'b01100011;
 data[10] = 'b00000001;
 data[9] = 'b00000100;
 data[8] = 'b00010011;

 data[15] = 'b11111100;
 data[14] = 'b00000100;
 data[13] = 'b00111000;
 data[12] = 'b00100011;

 data[19] = 'b00000000;
 data[18] = 'b00010000;
 data[17] = 'b00000111;
 data[16] = 'b10010011;

 data[23] = 'b11111110;
 data[22] = 'b11110100;
 data[21] = 'b00110100;
 data[20] = 'b00100011;

 data[27] = 'b00000000;
 data[26] = 'b00010000;
 data[25] = 'b00000111;
 data[24] = 'b10010011;

 data[31] = 'b11111110;

49

 data[30] = 'b11110100;
 data[29] = 'b00110000;
 data[28] = 'b00100011;

 data[35] = 'b11111100;
 data[34] = 'b00000100;
 data[33] = 'b00111100;
 data[32] = 'b00100011;

 data[39] = 'b11111101;
 data[38] = 'b10000100;
 data[37] = 'b00110111;
 data[36] = 'b10000011;

 data[43] = 'b00000000;
 data[42] = 'b00110111;
 data[41] = 'b10010111;
 data[40] = 'b10010011;

 data[47] = 'b11111111;
 data[46] = 'b00000100;
 data[45] = 'b00000111;
 data[44] = 'b00010011;

 data[51] = 'b00000000;
 data[50] = 'b11100111;
 data[49] = 'b10000111;
 data[48] = 'b10110011;

 data[55] = 'b11111110;
 data[54] = 'b00000100;
 data[53] = 'b00110111;
 data[52] = 'b00000011;

 data[59] = 'b10011110;
 data[58] = 'b11100111;
 data[57] = 'b10110000;
 data[56] = 'b00100011;

 data[63] = 'b11111101;
 data[62] = 'b10000100;
 data[61] = 'b00110111;
 data[60] = 'b10000011;

 data[67] = 'b00000000;
 data[66] = 'b00010111;
 data[65] = 'b10000111;
 data[64] = 'b10010011;

50

 data[71] = 'b11111100;
 data[70] = 'b11110100;
 data[69] = 'b00111100;
 data[68] = 'b00100011;

 data[75] = 'b11111101;
 data[74] = 'b10000100;
 data[73] = 'b00110111;
 data[72] = 'b00000011;

 data[79] = 'b00001100;
 data[78] = 'b00000000;
 data[77] = 'b00000111;
 data[76] = 'b10010011;

 data[83] = 'b00000010;
 data[82] = 'b11110111;
 data[81] = 'b00000100;
 data[80] = 'b01100011;

 data[87] = 'b11111110;
 data[86] = 'b10000100;
 data[85] = 'b00110111;
 data[84] = 'b10000011;

 data[91] = 'b11111100;
 data[90] = 'b11110100;
 data[89] = 'b00111000;
 data[88] = 'b00100011;

 data[95] = 'b11111110;
 data[94] = 'b00000100;
 data[93] = 'b00110111;
 data[92] = 'b10000011;

 data[99] = 'b11111110;
 data[98] = 'b11110100;
 data[97] = 'b00110100;
 data[96] = 'b00100011;

 data[103] = 'b11111101;
 data[102] = 'b00000100;
 data[101] = 'b00110111;
 data[100] = 'b00000011;

 data[107] = 'b11111110;
 data[106] = 'b10000100;
 data[105] = 'b00110111;
 data[104] = 'b10000011;

51

 data[111] = 'b00000000;
 data[110] = 'b11100111;
 data[109] = 'b10000111;
 data[108] = 'b10110011;

 data[115] = 'b11111110;
 data[114] = 'b11110100;
 data[113] = 'b00110000;
 data[112] = 'b00100011;

 data[119] = 'b11111010;
 data[118] = 'b00000000;
 data[117] = 'b00001000;
 data[116] = 'b11100011;

 data[123] = 'b01100010;
 data[122] = 'b10000001;
 data[121] = 'b00110100;
 data[120] = 'b00000011;

 data[127] = 'b01100011;
 data[126] = 'b00000001;
 data[125] = 'b00000001;
 data[124] = 'b00010011;

 data[131] = 'b00000000;
 data[130] = 'b00000000;
 data[129] = 'b00000000;
 data[128] = 'b00000000;

 end

 assign resp = state == RETURN;
 assign inst_o = {data[inst_addr + 3], data[inst_addr + 2], data[inst_addr +
1],
 data[inst_addr]};
 always @(*) case (size)
 BYTE: data_o = {56'b0, data[data_addr]};
 HALF: data_o = {48'b0, data[data_addr + 1], data[data_addr]};
 WORD: data_o = {32'b0, data[data_addr + 3], data[data_addr + 2],
data[data_addr + 1],
 data[data_addr]};
 default: data_o = {data[data_addr + 7], data[data_addr + 6],
data[data_addr + 5],
 data[data_addr + 4], data[data_addr + 3],
data[data_addr + 2],
 data[data_addr + 1], data[data_addr]};
 endcase

52

 always @(posedge clk) state <= state_next;
 always @(posedge we) begin
 data[data_addr] <= data_i[7:0];
 if (size > BYTE) begin
 data[data_addr + 1] <= data_i[15:8];
 if (size > HALF) begin
 data[data_addr + 2] <= data_i[23:16];
 data[data_addr + 3] <= data_i[31:24];
 if (size > WORD) begin
 data[data_addr + 4] <= data_i[39:32];
 data[data_addr + 5] <= data_i[47:40];
 data[data_addr + 6] <= data_i[55:48];
 data[data_addr + 7] <= data_i[63:56];
 end
 end
 end
 end

endmodule

53

Block diagram for design 1

54

caching_main_mem.v

module caching_main_mem(
 input wire clk, req, req_type, rw,
 input wire [27:0] data_ri_tag_index, data_wb_tag_index, inst_tag_index,
 input wire [127:0] line_i,

 output wire resp,
 output wire [127:0] line_o
);

 parameter
 MODE_INST = 'b00,
 MODE_DATA_RI = 'b01,
 MODE_DATA_WB = 'b10,
 IDLE = 'b0000,
 FETCH_1 = 'b0001,
 FETCH_2 = 'b0010,
 FETCH_3 = 'b0011,
 FETCH_4 = 'b0100,
 FETCH_5 = 'b0101,
 FETCH_6 = 'b0110,
 FETCH_7 = 'b0111,
 FETCH_8 = 'b1000,
 FETCH_9 = 'b1001,
 RETURN = 'b1010;

 reg [3:0] state;
 reg [127:0] lines [127:0];
 wire we = (state == FETCH_9) && rw;
 reg [3:0] state_next;
 always @(*) case (state)
 IDLE: state_next = (req) ? FETCH_1 : state;
 FETCH_1: state_next = FETCH_2;
 FETCH_2: state_next = FETCH_3;
 FETCH_3: state_next = FETCH_4;
 FETCH_4: state_next = FETCH_5;
 FETCH_5: state_next = FETCH_6;
 FETCH_6: state_next = FETCH_7;
 FETCH_7: state_next = FETCH_8;
 FETCH_8: state_next = FETCH_9;
 FETCH_9: state_next = RETURN;
 RETURN: state_next = (req) ? state : IDLE;
 default: state_next = state;
 endcase

 reg [7:0] init_counter;
 initial begin
 state = IDLE;

55

 init_counter = 0;
 while (init_counter < 128) begin
 lines[init_counter] = 0;
 init_counter = init_counter + 1;
 end

 lines[0] = {32'b11111100000001000011100000100011,
 32'b01100011000000010000010000010011,
 32'b01100010100000010011010000100011,
 32'b10011101000000010000000100010011};

 lines[1] = {32'b11111110111101000011000000100011,
 32'b00000000000100000000011110010011,
 32'b11111110111101000011010000100011,
 32'b00000000000100000000011110010011};

 lines[2] = {32'b11111111000001000000011100010011,
 32'b00000000001101111001011110010011,
 32'b11111101100001000011011110000011,
 32'b11111100000001000011110000100011};

 lines[3] = {32'b11111101100001000011011110000011,
 32'b10011110111001111011000000100011,
 32'b11111110000001000011011100000011,
 32'b00000000111001111000011110110011};

 lines[4] = {32'b00001100000000000000011110010011,
 32'b11111101100001000011011100000011,
 32'b11111100111101000011110000100011,
 32'b00000000000101111000011110010011};

 lines[5] = {32'b11111110000001000011011110000011,
 32'b11111100111101000011100000100011,
 32'b11111110100001000011011110000011,
 32'b00000010111101110000010001100011};

 lines[6] = {32'b00000000111001111000011110110011,
 32'b11111110100001000011011110000011,
 32'b11111101000001000011011100000011,
 32'b11111110111101000011010000100011};

 lines[7] = {32'b01100011000000010000000100010011,
 32'b01100010100000010011010000000011,
 32'b11111010000000000000100011100011,
 32'b11111110111101000011000000100011};

 lines[8] = {32'b0,
 32'b0,

56

 32'b0,
 32'b00000000000000000000000000000000};
 end

 assign resp = state == RETURN;
 assign line_o = req_type ? lines[data_ri_tag_index] : lines[inst_tag_index];

 always @(posedge clk) state <= state_next;
 always @(posedge we) lines[data_wb_tag_index] <= line_i;

endmodule

57

data_main_cache.v

module data_main_cache(
 input wire we, wmode,
 input wire [1:0] size,
 input wire [63:0] addr, data_i,
 input wire [127:0] line_i,

 output wire hm, wb,
 output wire [27:0] ri_tag_index, wb_tag_index,
 output reg [63:0] data_o,
 output wire [127:0] line_o
);

 parameter
 BYTE = 'b00,
 HALF = 'b01,
 WORD = 'b10,
 DOUBLE = 'b11;

 wire [21:0] tag = addr[31:10];
 wire [5:0] index = addr[9:4];
 wire [3:0] offset = addr[3:0];

 reg [63:0] valid;
 reg [23:0] tags [63:0];
 reg [7:0] data [63:0] [15:0]; // 64 lines, 16 bytes per line

 reg [6:0] init_counter_1;
 reg [4:0] init_counter_2;
 initial begin
 valid = 0;
 init_counter_1 = 0;
 while (init_counter_1 < 64) begin
 tags[init_counter_1] = 0;
 init_counter_2 = 0;
 while (init_counter_2 < 16) begin
 data[init_counter_1][init_counter_2] = 0;
 init_counter_2 = init_counter_2 + 1;
 end
 init_counter_1 = init_counter_1 + 1;
 end
 end

 assign hm = (tag == tags[index]) && valid[index];
 assign wb = valid[index];
 assign ri_tag_index = {tag, index};
 assign wb_tag_index = {tags[index], index};
 always @(*) case (size)

58

 BYTE: data_o = {56'b0, data[index][offset]};
 HALF: data_o = {48'b0, data[index][offset + 1], data[index][offset]};
 WORD: data_o = {32'b0, data[index][offset + 3], data[index][offset + 2],
 data[index][offset + 1], data[index][offset]};
 default: data_o = {data[index][offset + 7], data[index][offset + 6],
 data[index][offset + 5], data[index][offset + 4],
 data[index][offset + 3], data[index][offset + 2],
 data[index][offset + 1], data[index][offset]};
 endcase

 assign line_o = {data[index][15], data[index][14], data[index][13],
data[index][12],
 data[index][11], data[index][10], data[index][9],
data[index][8],
 data[index][7], data[index][6], data[index][5],
data[index][4],
 data[index][3], data[index][2], data[index][1],
data[index][0]};

 always @(posedge we) if (~wmode) begin // Normal write
 data[index][offset] <= data_i[7:0];
 if (size > BYTE) begin
 data[index][offset + 1] <= data_i[15:8];
 if (size > HALF) begin
 data[index][offset + 2] <= data_i[23:16];
 data[index][offset + 3] <= data_i[31:24];
 if (size > WORD) begin
 data[index][offset + 4] <= data_i[39:32];
 data[index][offset + 5] <= data_i[47:40];
 data[index][offset + 6] <= data_i[55:48];
 data[index][offset + 7] <= data_i[63:56];
 end
 end
 end
 end else begin // Line Write
 valid[index] <= 1;
 tags[index] <= tag;
 data[index][0] <= line_i[7:0];
 data[index][1] <= line_i[15:8];
 data[index][2] <= line_i[23:16];
 data[index][3] <= line_i[31:24];
 data[index][4] <= line_i[39:32];
 data[index][5] <= line_i[47:40];
 data[index][6] <= line_i[55:48];
 data[index][7] <= line_i[63:56];
 data[index][8] <= line_i[71:64];
 data[index][9] <= line_i[79:72];
 data[index][10] <= line_i[87:80];
 data[index][11] <= line_i[95:88];

59

 data[index][12] <= line_i[103:96];
 data[index][13] <= line_i[111:104];
 data[index][14] <= line_i[119:112];
 data[index][15] <= line_i[127:120];
 end

endmodule

60

design_2_mem_ctrl.v

module design_2_mem_ctrl(
 input wire clk, co_req, co_rw, co_type, dmc_hm, dmc_wb, imc_hm, mm_resp,

 output wire co_resp, dmc_we, dmc_wmode, imc_we, mm_req, mm_rw
);

 parameter
 // MODE_INST = 'b00,
 // MODE_DATA_RI = 'b01,
 // MODE_DATA_WB = 'b10,

 IDLE = 'b0000,
 WRITEBACK = 'b0001,
 WRITEBACK_UNSET = 'b0010,
 INST_READIN = 'b0011,
 INST_WRITEIN = 'b0100,
 DATA_READIN = 'b0101,
 DATA_WRITEIN = 'b0110,
 DATA_WRITEIN_UNSET = 'b0111,
 DATA_WRITE = 'b1000,
 FINISH = 'b1001;

 reg [3:0] state;
 reg [3:0] state_next;
 always @(*) case (state)
 IDLE: if (co_req)
 if (co_type)
 if (dmc_hm)
 state_next = (co_rw) ? DATA_WRITE : FINISH;
 else state_next = (dmc_wb) ? WRITEBACK : DATA_READIN;
 else state_next = (imc_hm) ? FINISH : INST_READIN;
 else state_next = state;
 WRITEBACK: state_next = mm_resp ? WRITEBACK_UNSET : state;
 WRITEBACK_UNSET: state_next = (mm_resp) ? state : DATA_READIN;
 INST_READIN: state_next = (mm_resp) ? INST_WRITEIN : state;
 INST_WRITEIN: state_next = FINISH;
 DATA_READIN: state_next = (mm_resp) ? DATA_WRITEIN : state;
 DATA_WRITEIN: state_next = (co_rw) ? DATA_WRITEIN_UNSET : FINISH;
 DATA_WRITEIN_UNSET: state_next = DATA_WRITE;
 DATA_WRITE: state_next = FINISH;
 FINISH: state_next = (co_req) ? state : IDLE;
 default: state_next = state;
 endcase

 initial state = IDLE;

 // Requset is finished

61

 assign co_resp = state == FINISH;
 // Request is data type and operation is either a writein or normal write
 assign dmc_we = (state == DATA_WRITEIN) || ((state == DATA_WRITE) && co_rw);
 // Line write for state before and during write-in, otherwise normal
 assign dmc_wmode = (state == DATA_READIN) || (state == DATA_WRITEIN);
 // Request is instrution type and operation is a writein
 assign imc_we = state == INST_WRITEIN;
 // Writeback or read-in request to main memory
 assign mm_req = (state == WRITEBACK) || (state == INST_READIN) || (state ==
DATA_READIN);
 assign mm_rw = ((state == IDLE) && ~dmc_hm && dmc_wb) || (state == WRITEBACK);

 always @(posedge clk) state <= state_next;

endmodule

62

instruction_main_cache.v

module instruction_main_cache(
 input wire we,
 input wire [31:0] addr,
 input wire [127:0] line,

 output wire hm,
 output wire [27:0] tag_index,
 output wire [31:0] data_o
);

 wire [3:0] offset = addr[3:0];
 wire [5:0] index = addr[9:4];
 wire [21:0] tag = addr[31:10];

 reg [63:0] valid;
 reg [23:0] tags [63:0];
 reg [7:0] data [63:0] [15:0]; // 64 lines, 16 bytes per line

 reg [6:0] init_counter_1;
 reg [4:0] init_counter_2;
 initial begin
 valid = 0;
 init_counter_1 = 0;
 while (init_counter_1 < 64) begin
 tags[init_counter_1] = 0;
 init_counter_2 = 0;
 while (init_counter_2 < 16) begin
 data[init_counter_1][init_counter_2] = 0;
 init_counter_2 = init_counter_2 + 1;
 end
 init_counter_1 = init_counter_1 + 1;
 end
 end

 assign hm = (tag == tags[index]) && valid[index];
 assign tag_index = addr[31:4];
 assign data_o = {data[index][offset + 3], data[index][offset + 2], data[index]
[offset + 1],
 data[index][offset]};

 always @(posedge we) begin
 valid[index] <= 1;
 tags[index] <= tag;
 data[index][0] <= line[7:0];
 data[index][1] <= line[15:8];
 data[index][2] <= line[23:16];
 data[index][3] <= line[31:24];

63

 data[index][4] <= line[39:32];
 data[index][5] <= line[47:40];
 data[index][6] <= line[55:48];
 data[index][7] <= line[63:56];
 data[index][8] <= line[71:64];
 data[index][9] <= line[79:72];
 data[index][10] <= line[87:80];
 data[index][11] <= line[95:88];
 data[index][12] <= line[103:96];
 data[index][13] <= line[111:104];
 data[index][14] <= line[119:112];
 data[index][15] <= line[127:120];
 end

endmodule

64

Block diagram for design with L1 Caches

65

data_main_cache_v2.v

module data_main_cache_v2 (
 input wire set_swap, we, wmode, write_src,
 input wire [1:0] size,
 input wire [63:0] addr, data_i,
 input wire [127:0] mm_line, swap_line_i,

 output wire do_evict, hm,
 output wire [27:0] evict_tag_index, read_tag_index,
 output reg [63:0] data_o,
 output wire [127:0] evict_line_o,
 output reg [27:0] swap_tag_index,
 output reg [127:0] swap_line_o
);

 parameter
 BYTE = 'b00,
 HALF = 'b01,
 WORD = 'b10,
 DOUBLE = 'b11;

 wire [3:0] offset = addr[3:0];
 wire [5:0] index = addr[9:4];
 wire [21:0] tag = addr[31:10];
 wire [127:0] write_line = write_src ? mm_line : swap_line_i;

 reg [63:0] valid;
 reg [23:0] tags [63:0];
 reg [7:0] data [63:0] [15:0]; // 64 lines, 16 bytes per line

 reg [6:0] init_counter_1;
 reg [4:0] init_counter_2;
 initial begin
 valid = 0;
 init_counter_1 = 0;
 while (init_counter_1 < 64) begin
 tags[init_counter_1] = 0;
 init_counter_2 = 0;
 while (init_counter_2 < 16) begin
 data[init_counter_1][init_counter_2] = 0;
 init_counter_2 = init_counter_2 + 1;
 end
 init_counter_1 = init_counter_1 + 1;
 end
 end

 assign do_evict = valid[index];
 assign hm = valid[index] && (tags[index] == tag);

66

 assign evict_tag_index = {tags[index], index};
 assign read_tag_index = {tag, index};
 always @(*) case (size)
 BYTE: data_o = {56'b0, data[index][offset]};
 HALF: data_o = {48'b0, data[index][offset + 1], data[index][offset]};
 WORD: data_o = {32'b0, data[index][offset + 3], data[index][offset + 2],
 data[index][offset + 1], data[index][offset]};
 default: data_o = {data[index][offset + 7], data[index][offset + 6],
 data[index][offset + 5], data[index][offset + 4],
 data[index][offset + 3], data[index][offset + 2],
 data[index][offset + 1], data[index][offset]};
 endcase
 assign evict_line_o = {data[index][15], data[index][14], data[index][13],
data[index][12],
 data[index][11], data[index][10], data[index][9],
data[index][8],
 data[index][7], data[index][6], data[index][5],
data[index][4],
 data[index][3], data[index][2], data[index][1],
data[index][0]};

 always @(posedge set_swap) begin
 swap_line_o <= evict_line_o;
 swap_tag_index <= evict_tag_index;
 end

 always @(posedge we) if (wmode) begin // Full line write
 valid[index] <= 1;
 tags[index] <= tag;
 data[index][0] <= write_line[7:0];
 data[index][1] <= write_line[15:8];
 data[index][2] <= write_line[23:16];
 data[index][3] <= write_line[31:24];
 data[index][4] <= write_line[39:32];
 data[index][5] <= write_line[47:40];
 data[index][6] <= write_line[55:48];
 data[index][7] <= write_line[63:56];
 data[index][8] <= write_line[71:64];
 data[index][9] <= write_line[79:72];
 data[index][10] <= write_line[87:80];
 data[index][11] <= write_line[95:88];
 data[index][12] <= write_line[103:96];
 data[index][13] <= write_line[111:104];
 data[index][14] <= write_line[119:112];
 data[index][15] <= write_line[127:120];
 end else begin // Regular write
 data[index][offset] <= data_i[7:0];
 if (size > 0) begin
 data[index][offset + 1] <= data_i[15:8];

67

 if (size > 1) begin
 data[index][offset + 2] <= data_i[23:16];
 data[index][offset + 3] <= data_i[31:24];
 if (size > 2) begin
 data[index][offset + 4] <= data_i[39:32];
 data[index][offset + 5] <= data_i[47:40];
 data[index][offset + 6] <= data_i[55:48];
 data[index][offset + 7] <= data_i[63:56];
 end
 end
 end
 end

endmodule

68

data_victim_cache.v

module dvc(
 input wire set_swap, we, wsrc,
 input wire [27:0] evict_tag_index, read_tag_index, swap_tag_index_i,
 input wire [127:0] evict_line_i, swap_line_i,

 output wire hm, wb,
 output wire [27:0] wb_tag_index,
 output wire [127:0] wb_line,

 output reg [127:0] swap_line_o
);

 parameter
 TARGET_0 = 'b000,
 TARGET_1 = 'b001,
 TARGET_2 = 'b010,
 TARGET_3 = 'b011,
 TARGET_4 = 'b100,
 TARGET_5 = 'b101,
 TARGET_6 = 'b110,
 TARGET_7 = 'b111,
 MATCH_0 = 'b1000,
 MATCH_1 = 'b1001,
 MATCH_2 = 'b1010,
 MATCH_3 = 'b1011,
 MATCH_4 = 'b1100,
 MATCH_5 = 'b1101,
 MATCH_6 = 'b1110,
 MATCH_7 = 'b1111,
 MATCH_NONE = 'b0000,
 VALID_0 = 'b00000000,
 VALID_1 = 'b00000001,
 VALID_2 = 'b00000011,
 VALID_3 = 'b00000111,
 VALID_4 = 'b00001111,
 VALID_5 = 'b00011111,
 VALID_6 = 'b00111111,
 VALID_7 = 'b01111111,
 VALID_8 = 'b11111111;

 reg [2:0] target_swap;
 reg [7:0] valid;
 reg [27:0] tag_indexes [7:0];
 reg [127:0] lines [7:0];
 // Target for the line coming in.
 reg [2:0] target_push;
 always @(*) case (valid)

69

 VALID_0: target_push = TARGET_0;
 VALID_1: target_push = TARGET_1;
 VALID_2: target_push = TARGET_2;
 VALID_3: target_push = TARGET_3;
 VALID_4: target_push = TARGET_4;
 VALID_5: target_push = TARGET_5;
 VALID_6: target_push = TARGET_6;
 default: target_push = TARGET_7;
 endcase
 reg [3:0] match;
 always @(*) if (valid[0] && (read_tag_index == tag_indexes[0])) match =
MATCH_0;
 else if (valid[1] && (read_tag_index == tag_indexes[1])) match =
MATCH_1;
 else if (valid[2] && (read_tag_index == tag_indexes[2])) match =
MATCH_2;
 else if (valid[3] && (read_tag_index == tag_indexes[3])) match =
MATCH_3;
 else if (valid[4] && (read_tag_index == tag_indexes[4])) match =
MATCH_4;
 else if (valid[5] && (read_tag_index == tag_indexes[5])) match =
MATCH_5;
 else if (valid[6] && (read_tag_index == tag_indexes[6])) match =
MATCH_6;
 else if (valid[7] && (read_tag_index == tag_indexes[7])) match =
MATCH_7;
 else match = MATCH_NONE;

 reg [2:0] init_loop;
 initial begin
 swap_line_o = 0;

 target_swap = 0;
 valid = 0;

 for (init_loop = 0; init_loop < 7; init_loop = init_loop + 1) begin
 tag_indexes[init_loop] = 0;
 lines[init_loop] = 0;
 end
 tag_indexes[7] = 0;
 lines[7] = 0;
 end

 assign hm = match[3];
 assign wb = valid[7];
 assign wb_tag_index = tag_indexes[0];
 assign wb_line = lines[0];

 always @(posedge set_swap) begin

70

 case (match)
 MATCH_0: begin
 target_swap <= 0;
 swap_line_o <= lines[0];
 end
 MATCH_1: begin
 target_swap <= 1;
 swap_line_o <= lines[1];
 end
 MATCH_2: begin
 target_swap <= 2;
 swap_line_o <= lines[2];
 end
 MATCH_3: begin
 target_swap <= 3;
 swap_line_o <= lines[3];
 end
 MATCH_4: begin
 target_swap <= 4;
 swap_line_o <= lines[4];
 end
 MATCH_5: begin
 target_swap <= 5;
 swap_line_o <= lines[5];
 end
 MATCH_6: begin
 target_swap <= 6;
 swap_line_o <= lines[6];
 end
 MATCH_7: begin
 target_swap <= 7;
 swap_line_o <= lines[7];
 end
 MATCH_NONE: begin
 target_swap <= 0;
 swap_line_o <= 0;
 end
 endcase
 end

 always @(posedge we) begin
 if (~wsrc) begin // Eviction mode
 if (valid[7]) begin // Cache is full. Shift everything down and push
to top.
 tag_indexes[0] <= tag_indexes[1];
 tag_indexes[1] <= tag_indexes[2];
 tag_indexes[2] <= tag_indexes[3];
 tag_indexes[3] <= tag_indexes[4];
 tag_indexes[4] <= tag_indexes[5];

71

 tag_indexes[5] <= tag_indexes[6];
 tag_indexes[6] <= tag_indexes[7];
 tag_indexes[7] <= evict_tag_index;

 lines[0] <= lines[1];
 lines[1] <= lines[2];
 lines[2] <= lines[3];
 lines[3] <= lines[4];
 lines[4] <= lines[5];
 lines[5] <= lines[6];
 lines[6] <= lines[7];
 lines[7] <= evict_line_i;
 end else begin // Cache is not full. Push new line to top and make
valid.
 tag_indexes[target_push] <= evict_tag_index;
 lines[target_push] <= evict_line_i;
 valid[target_push] <= 'b1;
 end
 end else begin // Swap mode
 // Everything above the swap target gets pushed down.
 if (target_swap == 0) begin
 tag_indexes[0] <= tag_indexes[1];
 lines[0] <= lines[1];
 end
 if (target_swap <= 1) begin
 tag_indexes[1] <= tag_indexes[2];
 lines[1] <= lines[2];
 end
 if (target_swap <= 2) begin
 tag_indexes[2] <= tag_indexes[3];
 lines[2] <= lines[3];
 end
 if (target_swap <= 3) begin
 tag_indexes[3] <= tag_indexes[4];
 lines[3] <= lines[4];
 end
 if (target_swap <= 4) begin
 tag_indexes[4] <= tag_indexes[5];
 lines[4] <= lines[5];
 end
 if (target_swap <= 5) begin
 tag_indexes[5] <= tag_indexes[6];
 lines[5] <= lines[6];
 end
 if (target_swap <= 6) begin
 tag_indexes[6] <= tag_indexes[7];
 lines[6] <= lines[7];
 end

72

 if (valid[7]) begin // Cache is full. Push swapped-in line to top.
 tag_indexes[target_push] <= swap_tag_index_i;
 lines[target_push] <= swap_line_i;
 end else begin // Cache is not full. Push swapped-in line to top - 1.
 tag_indexes[target_push - 1] <= swap_tag_index_i;
 lines[target_push - 1] <= swap_line_i;
 end
 end
 end
endmodule

73

instruction_main_cache_v2.v

module instruction_main_cache_v2 (
 input wire set_swap, we, write_src,
 input wire [31:0] addr,
 input wire [127:0] mm_line, swap_line_i,

 output wire do_evict, hm,
 output wire [27:0] evict_tag_index, read_tag_index,
 output wire [31:0] data_o,
 output wire [127:0] evict_line_o,
 output reg [27:0] swap_tag_index,
 output reg [127:0] swap_line_o
);

 wire [3:0] offset = addr[3:0];
 wire [5:0] index = addr[9:4];
 wire [21:0] tag = addr[31:10];
 wire [127:0] write_line = write_src ? mm_line : swap_line_i;

 reg [63:0] valid;
 reg [23:0] tags [63:0];
 reg [7:0] data [63:0] [15:0]; // 64 lines, 16 bytes per line

 reg [6:0] init_counter_1;
 reg [4:0] init_counter_2;
 initial begin
 valid = 0;
 init_counter_1 = 0;
 while (init_counter_1 < 64) begin
 tags[init_counter_1] = 0;
 init_counter_2 = 0;
 while (init_counter_2 < 16) begin
 data[init_counter_1][init_counter_2] = 0;
 init_counter_2 = init_counter_2 + 1;
 end
 init_counter_1 = init_counter_1 + 1;
 end
 end

 assign do_evict = valid[index];
 assign hm = valid[index] && (tags[index] == tag);
 assign evict_tag_index = {tags[index], index};
 assign read_tag_index = {tag, index};
 assign data_o = {data[index][offset + 3], data[index][offset + 2],
data[index][offset + 1],
 data[index][offset]};
 assign evict_line_o = {data[index][15], data[index][14], data[index][13],
data[index][12],

74

 data[index][11], data[index][10], data[index][9],
data[index][8],
 data[index][7], data[index][6], data[index][5],
data[index][4],
 data[index][3], data[index][2], data[index][1],
data[index][0]};

 always @(posedge set_swap) begin
 swap_line_o <= evict_line_o;
 swap_tag_index <= evict_tag_index;
 end

 always @(posedge we) begin // Full line write
 valid[index] <= 1;
 tags[index] <= tag;
 data[index][0] <= write_line[7:0];
 data[index][1] <= write_line[15:8];
 data[index][2] <= write_line[23:16];
 data[index][3] <= write_line[31:24];
 data[index][4] <= write_line[39:32];
 data[index][5] <= write_line[47:40];
 data[index][6] <= write_line[55:48];
 data[index][7] <= write_line[63:56];
 data[index][8] <= write_line[71:64];
 data[index][9] <= write_line[79:72];
 data[index][10] <= write_line[87:80];
 data[index][11] <= write_line[95:88];
 data[index][12] <= write_line[103:96];
 data[index][13] <= write_line[111:104];
 data[index][14] <= write_line[119:112];
 data[index][15] <= write_line[127:120];
 end

endmodule

75

instruction_victim_cache.v

module instruction_victim_cache(
 input wire set_swap, we, wsrc,
 input wire [27:0] evict_tag_index, read_tag_index, swap_tag_index_i,
 input wire [127:0] evict_line_i, swap_line_i,

 output wire hm,
 output reg [127:0] swap_line_o
);

 parameter
 TARGET_0 = 'b000,
 TARGET_1 = 'b001,
 TARGET_2 = 'b010,
 TARGET_3 = 'b011,
 TARGET_4 = 'b100,
 TARGET_5 = 'b101,
 TARGET_6 = 'b110,
 TARGET_7 = 'b111,
 MATCH_0 = 'b1000,
 MATCH_1 = 'b1001,
 MATCH_2 = 'b1010,
 MATCH_3 = 'b1011,
 MATCH_4 = 'b1100,
 MATCH_5 = 'b1101,
 MATCH_6 = 'b1110,
 MATCH_7 = 'b1111,
 MATCH_NONE = 'b0000,
 VALID_0 = 'b00000000,
 VALID_1 = 'b00000001,
 VALID_2 = 'b00000011,
 VALID_3 = 'b00000111,
 VALID_4 = 'b00001111,
 VALID_5 = 'b00011111,
 VALID_6 = 'b00111111,
 VALID_7 = 'b01111111,
 VALID_8 = 'b11111111;

 reg [2:0] target_swap;
 reg [7:0] valid;
 reg [27:0] tag_indexes [7:0];
 reg [127:0] lines [7:0];
 // Target for the line coming in.
 reg [2:0] target_push;
 always @(*) case (valid)
 VALID_0: target_push = TARGET_0;
 VALID_1: target_push = TARGET_1;
 VALID_2: target_push = TARGET_2;

76

 VALID_3: target_push = TARGET_3;
 VALID_4: target_push = TARGET_4;
 VALID_5: target_push = TARGET_5;
 VALID_6: target_push = TARGET_6;
 default: target_push = TARGET_7;
 endcase
 reg [3:0] match;
 always @(*) if (valid[0] && (read_tag_index == tag_indexes[0])) match =
MATCH_0;
 else if (valid[1] && (read_tag_index == tag_indexes[1])) match =
MATCH_1;
 else if (valid[2] && (read_tag_index == tag_indexes[2])) match =
MATCH_2;
 else if (valid[3] && (read_tag_index == tag_indexes[3])) match =
MATCH_3;
 else if (valid[4] && (read_tag_index == tag_indexes[4])) match =
MATCH_4;
 else if (valid[5] && (read_tag_index == tag_indexes[5])) match =
MATCH_5;
 else if (valid[6] && (read_tag_index == tag_indexes[6])) match =
MATCH_6;
 else if (valid[7] && (read_tag_index == tag_indexes[7])) match =
MATCH_7;
 else match = MATCH_NONE;

 reg [2:0] init_loop;
 initial begin
 swap_line_o = 0;

 target_swap = 0;
 valid = 0;

 for (init_loop = 0; init_loop < 7; init_loop = init_loop + 1) begin
 tag_indexes[init_loop] = 0;
 lines[init_loop] = 0;
 end
 tag_indexes[7] = 0;
 lines[7] = 0;
 end

 assign hm = match[3];

 always @(posedge set_swap) begin
 case (match)
 MATCH_0: begin
 target_swap <= 0;
 swap_line_o <= lines[0];
 end
 MATCH_1: begin

77

 target_swap <= 1;
 swap_line_o <= lines[1];
 end
 MATCH_2: begin
 target_swap <= 2;
 swap_line_o <= lines[2];
 end
 MATCH_3: begin
 target_swap <= 3;
 swap_line_o <= lines[3];
 end
 MATCH_4: begin
 target_swap <= 4;
 swap_line_o <= lines[4];
 end
 MATCH_5: begin
 target_swap <= 5;
 swap_line_o <= lines[5];
 end
 MATCH_6: begin
 target_swap <= 6;
 swap_line_o <= lines[6];
 end
 MATCH_7: begin
 target_swap <= 7;
 swap_line_o <= lines[7];
 end
 MATCH_NONE: begin
 target_swap <= 0;
 swap_line_o <= 0;
 end
 endcase
 end

 always @(posedge we) begin
 if (~wsrc) begin // Eviction mode
 if (valid[7]) begin // Cache is full. Shift everything down and push
to top.
 tag_indexes[0] <= tag_indexes[1];
 tag_indexes[1] <= tag_indexes[2];
 tag_indexes[2] <= tag_indexes[3];
 tag_indexes[3] <= tag_indexes[4];
 tag_indexes[4] <= tag_indexes[5];
 tag_indexes[5] <= tag_indexes[6];
 tag_indexes[6] <= tag_indexes[7];
 tag_indexes[7] <= evict_tag_index;

 lines[0] <= lines[1];
 lines[1] <= lines[2];

78

 lines[2] <= lines[3];
 lines[3] <= lines[4];
 lines[4] <= lines[5];
 lines[5] <= lines[6];
 lines[6] <= lines[7];
 lines[7] <= evict_line_i;
 end else begin // Cache is not full. Push new line to top and make
valid.
 tag_indexes[target_push] <= evict_tag_index;
 lines[target_push] <= evict_line_i;
 valid[target_push] <= 'b1;
 end
 end else begin // Swap mode
 // Everything above the swap target gets pushed down.
 if (target_swap == 0) begin
 tag_indexes[0] <= tag_indexes[1];
 lines[0] <= lines[1];
 end
 if (target_swap <= 1) begin
 tag_indexes[1] <= tag_indexes[2];
 lines[1] <= lines[2];
 end
 if (target_swap <= 2) begin
 tag_indexes[2] <= tag_indexes[3];
 lines[2] <= lines[3];
 end
 if (target_swap <= 3) begin
 tag_indexes[3] <= tag_indexes[4];
 lines[3] <= lines[4];
 end
 if (target_swap <= 4) begin
 tag_indexes[4] <= tag_indexes[5];
 lines[4] <= lines[5];
 end
 if (target_swap <= 5) begin
 tag_indexes[5] <= tag_indexes[6];
 lines[5] <= lines[6];
 end
 if (target_swap <= 6) begin
 tag_indexes[6] <= tag_indexes[7];
 lines[6] <= lines[7];
 end

 if (valid[7]) begin // Cache is full. Push swapped-in line to top.
 tag_indexes[target_push] <= swap_tag_index_i;
 lines[target_push] <= swap_line_i;
 end else begin // Cache is not full. Push swapped-in line to top - 1.
 tag_indexes[target_push - 1] <= swap_tag_index_i;
 lines[target_push - 1] <= swap_line_i;

79

 end
 end
 end
endmodule

80

vc_mem_ctrl.v

module vc_mem_ctrl(
 input wire clk, co_req, co_rw, co_type, dmc_evict, dmc_hm, dvc_hm, dvc_wb,
imc_evict, imc_hm,
 ivc_hm, mm_resp,

 output wire co_resp, dmc_we, dmc_write_mode, dmc_write_src, dvc_we, dvc_wsrc,
imc_we,
 imc_write_src, ivc_we, ivc_wsrc, mm_req, mm_rw, d_set_swap, i_set_swap
);

 parameter
 MODE_INST = 'b00,
 MODE_DATA_RI = 'b01,
 MODE_DATA_WB = 'b10,

 IDLE = 'b0000,
 INST_EVICT = 'b0001,
 INST_SET_SWAP = 'b0010,
 INST_SWAP = 'b0011,
 INST_READIN = 'b0100,
 INST_WRITEIN = 'b0101,

 DATA_EVICT = 'b0110,
 DATA_SET_SWAP = 'b0111,
 DATA_SWAP = 'b1000,
 DATA_WRITEBACK = 'b1001,
 DATA_READIN = 'b1010,
 DATA_WRITEIN = 'b1011,
 DATA_WRITE_PREP = 'b1100,
 DATA_WRITE = 'b1101,
 FINISH = 'b1110;

 reg [3:0] state;
 reg [3:0] state_next;
 always @(*) case (state)
 IDLE: if (co_req)
 if (co_type) begin
 if (dmc_hm) state_next = co_rw ? DATA_WRITE : FINISH;
 else if (dvc_hm) state_next = DATA_SET_SWAP;
 else if (dmc_evict) state_next = DATA_EVICT;
 else state_next = DATA_READIN;
 end else begin
 if (imc_hm) state_next = FINISH;
 else if (ivc_hm) state_next = INST_SET_SWAP;
 else if (imc_evict) state_next = INST_EVICT;
 else state_next = INST_READIN;
 end

81

 else state_next = IDLE;
 INST_EVICT: state_next = INST_READIN;
 INST_SET_SWAP: state_next = INST_SWAP;
 INST_SWAP: state_next = FINISH;
 INST_READIN: state_next = INST_WRITEIN;
 INST_WRITEIN: state_next = FINISH;
 DATA_EVICT: state_next = DATA_READIN;
 DATA_SET_SWAP: state_next = DATA_SWAP;
 DATA_SWAP: state_next = co_rw ? DATA_WRITE_PREP : FINISH;
 DATA_WRITEBACK: state_next = mm_resp ? DATA_EVICT : state;
 DATA_READIN: state_next = mm_resp ? DATA_WRITEIN : state;
 DATA_WRITEIN: state_next = co_rw ? DATA_WRITE_PREP : FINISH;
 DATA_WRITE_PREP: state_next = DATA_WRITE;
 DATA_WRITE: state_next = FINISH;
 FINISH: state_next = co_req ? state : IDLE;
 default: state_next = state;
 endcase

 initial state = IDLE;

 assign co_resp = state == FINISH;
 assign dmc_we = (state == DATA_SWAP) || (state == DATA_WRITEIN) || (state ==
DATA_WRITE);
 // Applicable states and the previous. 1 means full line.
 assign dmc_write_mode = (state == DATA_SET_SWAP) || (state == DATA_SWAP) ||
 (state == DATA_READIN) || (state == DATA_WRITEIN);
 // 1 means main memory source. Applicable and previous states
 assign dmc_write_src = (state == DATA_READIN) || (state == DATA_WRITEIN);
 assign dvc_we = (state == DATA_SWAP) || (state == DATA_EVICT);
 // 1 means swap data. Applicable and previous states
 assign dvc_wsrc = (state == DATA_SET_SWAP) || (state == DATA_SWAP);
 assign imc_we = (state == INST_SWAP) || (state == INST_WRITEIN);
 // 1 means main memory source. Applicable and previous states
 assign imc_write_src = (state == INST_READIN) || (state == INST_WRITEIN);
 assign ivc_we = (state == INST_SWAP) || (state == INST_EVICT);
 // 1 means swap data. Applicable and previous states
 assign ivc_wsrc = (state == INST_SET_SWAP) || (state == INST_SWAP);
 assign mm_req = (state == INST_READIN) || (state == DATA_WRITEBACK) || (state
== DATA_READIN);
 assign d_set_swap = (state == DATA_SET_SWAP);
 assign i_set_swap = (state == INST_SET_SWAP);
 // Applicable and previous state (given proper signals)
 assign mm_rw = ((state == IDLE) && co_type && ~dmc_hm && ~dvc_hm && dvc_wb) ||
 (state == DATA_WRITEBACK);

 always @(posedge clk) state <= state_next;

endmodule

82

Block diagram for design with L1 and victim caches

83

Default Settings used for Vivado power estimation

Junction Temperature 26.183 °C

Ambient Temperature 25 °C

Effective Thermal Resistance 11.533 °C/W

Airflow 250 LFM

Heat Sink None

Board Selection Medium 10”x10”

Number of Board Layers 8 to 11

Vccint (Voltage) 1.000 V

Vccaux 1.800 V

Vcco33 3.300 V

Vcco25 2.500 V

Vcco18 1.800 V

Vcco15 1.500 V

Vcco135 1.350 V

Vcco12 1.200 V

Vccaux_io 1.800 V

Vccbram 1.000 V

MGTAVcc 1.000 V

MGTAVtt 1.200 V

MGTVccaux 1.800 V

Vccpint 1.000 V

Vccpaux 1.800 V

Vccpll 1.800 V

Vcco_ddr 1.500 V

Vcco_mio0 1.800 V

Vcco_mio1 1.800 V

Vccadc 1.800 V

Default Toggle Rate 12.5

Default Static Probability 0.5

Clock Period 20 ns

84

B Future Work Example Code

primeFactors.c

#include <stdint.h>

void factor();

void main() {
 int array [32];
 int index = 0;
 factor(15876000, array, &index);
}

void factor(int value, int *array, int *index) {
 int wFactor = 2;
 int lowFactor = 0;
 int highFactor = value;

 while (wFactor < highFactor) {
 if (value % wFactor == 0) {
 lowFactor = wFactor;
 highFactor = value / wFactor;
 }
 wFactor += 1;
 }

 if (lowFactor != 0) {
 factor(lowFactor, array, index);
 factor(highFactor, array, index);
 } else {
 array[*index] = value;
 *index += 1;
 }
 return;
}

85

Excerpt from the primefactors object dump created with the RISC-V GCC compiler

00000000000103dc <main>:
 103dc: 7135 addi sp,sp,-160
 103de: ed06 sd ra,152(sp)
 103e0: e922 sd s0,144(sp)
 103e2: 1100 addi s0,sp,160
 103e4: f6042623 sw zero,-148(s0)
 103e8: f6c40713 addi a4,s0,-148
 103ec: f7040793 addi a5,s0,-144
 103f0: 863a mv a2,a4
 103f2: 85be mv a1,a5
 103f4: 00f247b7 lui a5,0xf24
 103f8: fa078513 addi a0,a5,-96
 103fc: 00e000ef jal ra,1040a <factor>
 10400: 0001 nop
 10402: 60ea ld ra,152(sp)
 10404: 644a ld s0,144(sp)
 10406: 610d addi sp,sp,160
 10408: 00000000 halt

000000000001040a <factor>:
 1040a: 7139 addi sp,sp,-64
 1040c: fc06 sd ra,56(sp)
 1040e: f822 sd s0,48(sp)
 10410: 0080 addi s0,sp,64
 10412: 87aa mv a5,a0
 10414: fcb43823 sd a1,-48(s0)
 10418: fcc43423 sd a2,-56(s0)
 1041c: fcf42e23 sw a5,-36(s0)
 10420: 4789 li a5,2
 10422: fef42623 sw a5,-20(s0)
 10426: fe042423 sw zero,-24(s0)
 1042a: fdc42783 lw a5,-36(s0)
 1042e: fef42223 sw a5,-28(s0)
 10432: a815 j 10466 <factor+0x5c>
 10434: fdc42703 lw a4,-36(s0)
 10438: fec42783 lw a5,-20(s0)
 1043c: 02f767bb remw a5,a4,a5
 10440: 2781 sext.w a5,a5
 10442: ef89 bnez a5,1045c <factor+0x52>
 10444: fec42783 lw a5,-20(s0)
 10448: fef42423 sw a5,-24(s0)
 1044c: fdc42703 lw a4,-36(s0)
 10450: fec42783 lw a5,-20(s0)
 10454: 02f747bb divw a5,a4,a5
 10458: fef42223 sw a5,-28(s0)
 1045c: fec42783 lw a5,-20(s0)
 10460: 2785 addiw a5,a5,1

86

 10462: fef42623 sw a5,-20(s0)
 10466: fec42703 lw a4,-20(s0)
 1046a: fe442783 lw a5,-28(s0)
 1046e: 2701 sext.w a4,a4
 10470: 2781 sext.w a5,a5
 10472: fcf741e3 blt a4,a5,10434 <factor+0x2a>
 10476: fe842783 lw a5,-24(s0)
 1047a: 2781 sext.w a5,a5
 1047c: c785 beqz a5,104a4 <factor+0x9a>
 1047e: fe842783 lw a5,-24(s0)
 10482: fc843603 ld a2,-56(s0)
 10486: fd043583 ld a1,-48(s0)
 1048a: 853e mv a0,a5
 1048c: f7fff0ef jal ra,1040a <factor>
 10490: fe442783 lw a5,-28(s0)
 10494: fc843603 ld a2,-56(s0)
 10498: fd043583 ld a1,-48(s0)
 1049c: 853e mv a0,a5
 1049e: f6dff0ef jal ra,1040a <factor>
 104a2: a02d j 104cc <factor+0xc2>
 104a4: fc843783 ld a5,-56(s0)
 104a8: 439c lw a5,0(a5)
 104aa: 078a slli a5,a5,0x2
 104ac: fd043703 ld a4,-48(s0)
 104b0: 97ba add a5,a5,a4
 104b2: fdc42703 lw a4,-36(s0)
 104b6: c398 sw a4,0(a5)
 104b8: fc843783 ld a5,-56(s0)
 104bc: 439c lw a5,0(a5)
 104be: 2785 addiw a5,a5,1
 104c0: 0007871b sext.w a4,a5
 104c4: fc843783 ld a5,-56(s0)
 104c8: c398 sw a4,0(a5)
 104ca: 0001 nop
 104cc: 70e2 ld ra,56(sp)
 104ce: 7442 ld s0,48(sp)
 104d0: 6121 addi sp,sp,64
 104d2: 8082 ret

87

Bibliography

[1] Chu, Pong P. FPGA Prototyping Using Verilog Examples: Xilinx Spartan -3 Version. Wiley, 2008.

[2] EEVblog (2013, Jul. 20) EEVblog #496 - What Is An FPGA?. Retrieved from EEVblog
https://www.eevblog.com/2013/07/20/eevblog-496-what-is-an-fpga/

[3] Isci, C., & Martonosi, M. (2003) Runtime Power Monitoring in High-End Processors: Methodology
and Empirical Data. Princeton University Department of Electrical Engineering.

[4] Isci, C., & Martonosi, M. (2006) Phase Characterization for Power: Evaluating Control-Flow-Based
and Event-Counter-Based Techniques. Princeton University Department of Electrical
Engineering

[5] Jouppi, N. (1990) Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers. Digital Equipment Corporation Western Research Lab

[6] Kim, N., Flaunter, K., Blaauw, D., & Mudge, T. (2002) Drowsy Instruction Caches: Leakage Power
Reduction using Dynamic Voltage Scaling and Cache Sub-bank Prediction. Advanced
Computer Architecture Lab, The University of Michigan

[7] Patterson, D., & Hennessey, J. (2018) Computer Organization and Design: The Hardware/Software
Interface, RISC-V Edition. Walthman, MA: Elsevier Inc

[8] Sanguinetti, J. (2002) Introduction to Verilog. Retrieved from http://vol.verilog.com/

[9] “The RISC-V Instruction Set Manual.” Edited by Andrew Waterman and Krste Asanovic, RISC-V
Foundation, 7 May 2017, riscv.org/specifications/.

[10] Xilinx Power Estimation and Analysis using Vivado. Retrieved from Xilinx
https://www.xilinx.com/video/hardware/power-estimation-analysis-using-vivado.html

88

https://www.eevblog.com/2013/07/20/eevblog-496-what-is-an-fpga/
https://www.xilinx.com/video/hardware/power-estimation-analysis-using-vivado.html
http://vol.verilog.com/

	James Madison University
	JMU Scholarly Commons
	Spring 2019

	A study of the effect of memory system configuration on the power consumption of an FPGA processor
	Adam Blalock
	Recommended Citation

	tmp.1555363463.pdf.n13Oi

