Deminers, Manual Demining and their Personal Protective Equipment

- Manual Demining in Afghanistan, page 24
- Protection Needs in Humanitarian Demining, page 30
- Deminers, Manual Demining and Their Protective Equipment, page 40
- RONCO: Demining, Integration and the IMAS Contract, page 68
- Central America Landmine Survivors, page 78
Conference Calendar

September 11-15, 2000
Second Meeting of States Parties to the Mine Ban Treaty
Geneva, Switzerland
No contact information yet. For updates at: www.icbl.org/calendar.

September 19-24, 2000
Use of Satellites and Integrated Technologies for Humanitarian Purposes, co-organized with the EC/Joint Research Center
Ispra, Italy
The Conference will cover four topics, namely: humanitarian demining, movement of refugees and other displaced persons, food and water security and tele-medicine. For further information, please contact: Ms Valerie A. hood, Secretary General, EURISY Association 3-5 rue Marie Nikif, 79035 Paris, France Tel: +33 (0)1 47 34 00 79 Fax: +33 (0)1 47 34 01 59 E-mail: euvis Ye@icnrc.org.

October 2-4, 2000
CLAWAR 2000
Madrid, Spain
Organized by the Thematic Network on Climbing and Walking Robots (CLAWAR), funded by the European Commission under the Brite Euram Programme. The aims is to bring together not only people engaged in developing CLAWAR robots, but also to encourage interaction with research groups engaged in fundamental work on mobile machines and associated support technologies. The interest in climbing and walking robots has increased over recent years and there is a growing need to widen the applications base for this area of technology. Current applications include humanitarian demining. For more information, write to: INSTITUTO DE AUTOMATICA INDUSTRIAL, Carrera de Caspe Real Km, 0, 2001, 2800 La Oveada - Arganda del Rey - Madrid, or visit their conference website at: www.iia.es/CLAWAR2000/ or you can E-mail for more information to: clawar2000@iia.csic.es.

October 25-26, 2000
Regional Conference on Landmines
Hosted by the Government of Djibouti and sponsored, in part, by the U.S. State Department. For more information, contact Mr. Haex at: ahaex@rocketmail.com.

October 29-November 1, 2000
Enhancing Mine Detecting Dog (MDD) Operations - A Practitioner's Perspective
San Antonio, Texas
Co-hosted by the U.S. Department of State and Slovenian International Trust Fund for Demining and Victim Assistance in Bosnia & Herzegovina and supported by the James Madison University Mine Action Information Center (MAIC). Workshop will bring together select MDD trainers, handlers and other dog specialists to examine ways to improve current MDD performance through training modifications, accreditation, integration into demining operations and better MDD planning and coordination. More information to follow. For further information, contact: Joe Loke, Deputy Director, MAIC, at: Tel: (540) 568-2715; Fax: (540) 568-8176; E-mail: lokeye@jmu.edu or visit the website at: www.hcsd.jmu.edu.

March 27-30, 2001
2nd Australian-U.S. Joint Conference on Mine Technologies and Mine Countermeasures
Sydney, Australia
Co-hosted by the Defence Science Technology Organization (DSTO) of Australia and the Mine Warfare Association (MINWARA) and will cover all aspects of naval mine warfare, land mine warfare, humanitarian and peacetime demining. For more information, contact Al Bortone: ambl@minwara.org.

July 1-6, 2001
International Society of Prosthetics & Orthotics (ISPO) 10th World Congress
Glasgow, U.K.
Looking to attract about 1,500 doctors, surgeons, engineers, prosthetists, orthotists, physio and occupational therapists active in the fields of prosthetics, orthotics and rehabilitation engineering. For further information, contact Colin Peacock at ISPO 2001 Congress Secretariat, s/o Meeting Makers Ltd., Jordanhill Campus, 76 Southside Drive, Glasgow G13 1PP, U.K. Tel: +44 141 434 1500; Fax: +44 141 434 1519; E-mail: ispo@meetingmakers.co.uk; or visit their website at: www.ISPO.org.

The Journal of Mine Action

Volume 4, Issue 2, 2000

Table of Contents

Focus
8 Personal Protective Equipment: The Neverending Story, by Lance J. Malan
9 Reducing Accidents in Demining: Achievements in Afghanistan, by James Treanor
16 Development of a Procedure for Evaluating Demining Protective Equipment, by Cameron R. Eason
24 Manual Demining in Afghanistan, by Kefayatullah Elhag
30 The Facts on Protection Needs in Humanitarian Demining, by Andy Smith
37 Comparing the Insurmountable: The Canadian Centre for Mine Action Technologies Advances the Technological Realm of Demining, by Stephanie Slocum and Virginia Saunder
40 Deminers, Manual Demining and Their Protective Equipment, by Norman Stewart
42 Countering the Global Landmine Epidemic Through Basic Science Research, by Mark S. Rassmussen and Robert M. Harris, M.D.
116 The Human Touch: By Russell Ceht, Greg Thorne
142 International Standards for Personal Protective Equipment, by Colon Alastair Mcdonald and Keith Feigenbaum
152 Comparative Study of Different Lightweight Head Protection Systems with Full-Face Visors for Humanitarian Deminers, by J. Nennberg, S. Islow, Dr. A. Makris and J. K. Donn

Notes from the Field
60 We Didn't Think It Would Happen to Us, by Chris North
62 From the Mine Field, by Chris North
65 Hobby Deminers in Quang Tri Province, by Douglas Patt

Features
68 RONCO Executives Talk About Demining, Integration and the IMAS Contract: An Interview with Lawrence Clandall, Stephen Edelman and A. David Lundberg, by Margaret Baez
74 Mozambique: A Country Ravaged by Civil War and Nature, by Stephanie Slocum and Virginia Saunder
78 Central America Landmine Survivors: The Need for Action In Nicaragua, by Dr. William Bayne
83 WWIII Ordeal Still Haunts Europe and the Asia-Pacific Rim, by Margaret Baez

Profiles
92 HALO True
92 INTERMOS
94 Mine Advisory Group
96 Norwegian Peoples Aid
97 MgM
98 MECHEM
99 Security Devices
101 Mine Clearance International

Editorials
108 From the Director's Desk—Saving Private Hamas, by Dennis Barlow
110 Editorial—It’s Mine and You Can’t Have It, by Joe Loke
The U.S. Approach: Deminer Personal Protective Equipment Development

by Col. George Zubaczewsky
U.S. Army Office of the Assistant Secretary of Defense for Special Operations and Low-Intensity Conflict

The deminer and his partner began work at 0730. By 0850, they had cleared 50 square meters. Both men wore frag-jackets, helmets and visors. The victim was clearing by using his prodder. He was called to help his section leader remove grass from a large pothole in the road. As he returned at 0850, he stepped on a mine he had previously missed. (Extracted from the Database of Demining Incident Victims, 1999, Incident #53.)

At around 1110, the deminer got a detector reading and began prodding and excavating the ground using a bayonet held in his left hand. A PPM-2 mine detonated. The victim was knocked backward about two meters by the blast and was lying partly in an uncleared area. He stood up quickly, leaving his visor that had been blown away and broken by the blast. The victim received first aid and arrived at the field hospital at 1120. The victim's visor was described as riddled by fragments and broken at the weak points of the articulation on both sides of the head frame. His frag jacket stopped all projections, limiting injuries to the most exposed parts. (Extracted from the Database of Demining Victims, 1999, Incident #63.)

The Supervisor was a highly experienced UXO specialist. He was placing charges on damaged PMD-6 mines found by deminers to destroy them. He placed one charge by a PDM-6 and stood up to move to a second mine only two meters away. As he stood, he tripped and fell, landing on the second mine. He either landed on his hand or his knee on the left side, knocking the pin from the MUV switch/fuse in the mine as he did so. In the detonation, he suffered traumatic amputation of his left knee and left arm. He also had blast injuries on the left side of his face and chest. The chest injuries were light because the victim was wearing a fiberglass back support as a result of an earlier, non-demining-related injury. He was not wearing any protective equipment. His eyes were undamaged. The victim remained conscious. He was the radio operator on site, so he had to explain to others how to call for the helicopter medevac. (Extracted from the Database of Demining Victims, 1999, Incident #19.)

Introduction
In 1998, the United States placed increasing emphasis on developing Personal Protective Equipment (PPE) for the individual operator engaged in humanitarian demining. It was believed that development of improved PPE suitable for humanitarian demining was well within the bounds of currently available technology. During the previous year, several conferences had highlighted the need for better protection of deminers. In March 1998, the U.S. Department of Defense—through the Night Vision and Electronic Sensors Directorate—hosted a Mine Action Center Workshop to specifically focus on individual deminer needs. Foremost among the requirements of workshop participants was the need to develop a body armor that was specifically designed and developed with the deminer in mind. The characteristics of deminer "body armor" that were discussed at this workshop included: affordability, lightweight and modularity allowing flexibility to tailor the PPE to the specific needs of individual deminers and environments.

Research
To better focus the development of deminer PPE, NVESD was requested to conduct a market survey of existing body armor as well as undertake research to better understand the nature of deminer injuries. Additionally, the U.S. Army's Surgical Research Institute in Fort Sam Houston, Texas, was contracted to conduct extensive research into landmine injuries of the lower extremities. Its research efforts in the Lower Extremity Assessment Program are discussed further in this journal.

Additionally, NVESD partnered with the Army's Naval Laboratories and Aberdeen Test Center as well as the Canadian Centre for Mine Action Technology to conduct extensive blast effects testing on existing PPE. NVESD also embarked on a program to develop demining PPE that could be made commercially available within a short period of time. To this end, NVESD contracted with Med-Eng Systems of Canada to develop the Humanitarian Demining Ensemble, which is currently available and has already been purchased for use in South America and the Middle East.

Furthermore, NVESD worked with Andy Smith to develop PPE that could be locally produced in a mine-affected country. The U.S. demining technology development program endorses both approaches, i.e., development of commercially available PPE for demining organizations and donors who can afford to buy it as well as locally manufactured body armor for countries wishing to establish an indigenous capability. The caveat in this endorsement, of course, is that both meet minimally acceptable standards of protection. Finally, the further services of Andy Smith were retained to gather field data pertaining to deminer injuries. Due primarily to his significant interest in PPE as well as his access to and knowledge of several demining theaters, it was felt that Smith had an extremely useful insight and perspective on deminer injuries.

Landmine Casualty Data Report: Deminer Injuries
Smith's research was carried on from September 1998 to June 1999. Deminer injury information was gathered from Afghanistan, Angola, Bosnia-Herzegovina, Cambodia, Cape (Guantanamo Bay), Iraq, Laos, Mozambique and Zimbabwe. In many cases, it was possible to gather information directly through interviews with the individuals involved. In other instances, pertinent information was extracted from investigative, medical and insurance reports. Eventually, information was collected covering the period from 1993 through 1998, on 236 incidents, involving 301 victims.

An independent analysis of Smith's database by...
the U.S. military's Casualty Care Research Center in Bethesda, Maryland, produced a study entitled "Landmine Casualty Data Report: Deminer Injuries," which is possibly the first of its kind. This analysis revealed some particularly useful information pertaining to deminer injuries and their causes. It was found, for example, that the most common landmines causing injuries and, in some instances, death, were AP blast mines. The most commonly encountered mines in this category were the PMN-2 and the Type 72. The activity that deminers were most often engaged in when an incident occurred was prodding, which accounted for 29 percent of the incidents. Although some demolition practitioners claim that mining mines should not occur, it does, accounting for 26 percent of the incidents.

Upon further review of the data, it was determined that the legs were the most common location of deminer injuries with 63 percent suffering injuries to their lower extremities. Injuries to the head were the next most common occurrence (56 percent); the arms (55 percent); the torso (33 percent) and the eyes (30 percent). In those suffering eye injuries, 10.5 percent sustained permanent blindness. Thirty-seven of the deminers involved in incidents became fatalities (12.5 percent). The majority of these were killed while clearing vegetation.

The study draws several conclusions that can be implemented today to help reduce deminer injuries. Among these are that deminers should wear facial and eye protection. Additionally, deminer injuries and deaths could be reduced through improvements in PPE, procedures and medical response. Finally, the study drew the potentially controversial conclusion that the accumulated data presented in the research "was insufficient to show any effect of the wearing of an armor vest, jacket or apron for either minor or severe injuries and therefore does not prove or disprove the effectiveness of this type of protective equipment."

The study goes on to recommend that a standardized format be developed and adopted for reporting mine incidents and injuries. The data in the study also supports the "need to develop and establish test and evaluation protocols for measuring the effectiveness of protective equipment (i.e., minimum standards) against mines that are likely to be found in demining, operation environments." Additionally, the study recommends that additional data be obtained validating the effectiveness of protective vests, jackets or aprons. Finally, analysis of the data suggests that research and development into more effective footwear has the potential to mitigate the most common form of lower extremity injury—amputations, which occurred in 42 percent of the cases of leg injuries.

Conclusion

Although the United States anticipates concluding the majority of its research and development into deminer protective clothing during fiscal 2000, modifications and testing of existing PPE will continue throughout the duration of the program. Additionally, development and testing of visors, helmets and deminer body tools will also continue. The rationale for this is that PPE should be considered as an integral part of a deminer’s "tool box," not just simply as a nice-to-have accessory.

As such, future development as well as testing of PPE should use a systems-oriented approach. For example, visors should not be tested separately but should be evaluated in conjunction with the helmet they will be attached to so the protective vest that they will interface with. It is only in this manner that their full strengths and weaknesses will be identified.

Contact Information

Col. George Zahaczewsky
Office of the Assistant Secretary of Defense
OASD/SOLIC/ISO/SO
2160 Defense Pentagon
Rm. 1A-674B
Washington, D.C. 20301-2500
Tel: (703) 693-5233
Fax: (703) 693-3039
E-mail: colge@arglobal.net

Introduction

Now, as always, there is a huge debate about what protection is required and what Personal Protective Equipment (PPE) should be provided for personnel engaged in demining operations. Current opinion varies drastically between individual demining organizations, countries in which they operate and between governing bodies, which are coordinating the demining efforts.

Each organization within the demining community has a different view of what is required and what should be provided. These views are, in most cases, based on a variety of factors, such as experience, local customs, donor policy, a possible lack of understanding (due to the absence of independent information) and cost.

Very few independent and objective studies about the requirements and possible solutions have been carried out and widely circulated. A good start was made last year by the establishment of a focus group during a meeting in Washington D.C., and the results, which were due to be promulgated in 1999, are eagerly awaited.

Overall, given the multitude of other types of studies carried out each year, many of which tell us what we already know, the general lack of funding designated for research on PPE is disturbing.

Aim

My goal is to highlight the current standard and type of PPE in use with Handicap International (HI) deminers in the Balkans and to explain why this standard and type of PPE was chosen. If I succeed in contributing to a bit of controversy, so much the better, for this subject deserves a more important place on the agenda. Ultimately, this emphasis should lead to appropriate PPE being supplied to all deminers worldwide as a right. Donors and funding agencies should then be encouraged to enforce this practice by understanding the requirements and insisting that their operators conform to an acceptable and recognized standard.

Our Own Experiences: 1991–1995

All of us involved in mine clearance are, to some extent, victims of our past. My own perceptions were formed as an Ammunition Technical Officer (ATO) for a number of years in the British Army. "Demining is not a sport for ATOs," my colleagues from the Royal Engineers often remind me. Nevertheless, the concept of PPE is not new to me, both from the perspective of an ordinary soldier and as a Bomb Disposal Technician. I have worn the best equipment the British Army had to offer in a variety of circumstances, and I count myself as one of the lucky ones not to have had it tested by an explosion.
In March 1991, I went to Kuwait as part of a Royal Ordnance (RO) field evaluation team to look at the landmine problems (including landmines) remaining after the Iraqi occupation and the subsequent lib-
eration by the coalition forces. The task for RO was to clear over 2,500 sq. km of desert, including small villages and oilfield industrial complexes. This task involved both Battle Area Clearance (BAC) and conventional mine clearance. The operations director, who had been specifically contracted for this task, made an assessment at that time that for BAC, bal-
listic protection was not required. Conversely, in the case of the mine clearance, it was decided that the best available ballistic protective equipment was suitable for the environment and the threat, should be pro-
cured and worn during mine clearance operations. This equipment would consist of, at a minimum, a helmet, visor, ballistic jacket and trousers. Also, over-
boots made of ballistic material that covered the lower leg, from knee to foot were made available. Their use was optional.

The protective equipment provided was origi-

nally designed for military use and was composed of “off the shelf” items that the military felt were suit-
able. In 1991, as far as we were aware, there was no such thing as a “demining suit” designed specifically to meet the needs of commercial/humanitarian mine clear-
ance. Figure 1 illustrates the original equipment. In total, over 361,000 landmines were cleared by RO demining teams during the clearance opera-
tions between July 1991 and July 1993. Tragically, during demining operations, three British deminers were killed and six others suffered traumatic ampu-
tations to their lower limbs. These mine-
related fatalities were caused during location, neutralization and disarmament activities. Valmara V66 caused two casualties, which are large AP bounding fragmenting mines, and the third by a PT-Mi-Ba-II AT mine. Unfortunately, in the cases of the fatalities, the deminers were directly over the mines when they detonated, and it is unlikely that any practical protective equipment would have saved them. However, in the case of one victim, it was concluded that if upper arm protection had been available and had been worn, then the damage to the bursal artic-
ulations would have been less severe, and the chances of survival, in such circumstances, might have been improved. A redesigned suit, including integral upper arm protection and a high collar, was procured.

In July 1996, at a conference in Denmark, the broad outlines of a set of international standards were presented by working groups. These were reed by experts, writing that the equipment was developed by a separate U.N. led working group that promulgated in March 1997, at a conference in To-
kyo.

These standards were issued under the auspices of the U.N. and were effective upon receipt. They were to be the framework for the creation of stand-
ing Operating Procedures (SOP), and it was gener-
ally assumed that they were to be taken as the mini-
main standards to be adopted by all U.N. sponsored demining programs worldwide. They were to provide “an example to all people to which others conform, or should conform.”

In the case of PPE, there were concerns expressed by some manufacturers and their spokespersons re-
garding the suitability of the testing standards’ (V50 rating NATO STANAG 2920), as outlined in the U.N. International Standards document. As far as I am aware, no one has come up with a suitable alter-
native.

Demining for HI in Bosnia: 1997–1999

In September 1997, I assumed responsibility for the HI Demining and FOD program in Bosnia. This project was UNMBH funded and equipped with technical oversight from the UNMAC in Sarajevo. In the U.N. project documentation and terms of ref-
erring for the project, the importance of conform-
ing to the U.N. International Humanitarian De-
mining Standards was repeatedly underlined. The concern about adherence to these standards turned out to be so intense that the U.N. took responsibil-
ity for the procurement of all of the remaining equip-
ment. Yet, despite HI projections, the PPE supplied was not thought to be compliant with U.N. stan-
dards. In particular, the helmet and visor (polymy-
carbonate) combination was well below require-
ments, and the “protective vest” was no more than an off-the-shelf military flak jacket procured on the basis of cost, rather than effectiveness. This equip-
ment was better than the PPE worn by a great num-
ber of deminers in many countries but was, in the opinion of HI, well below the intended equipment in accordance to the U.N’s own standards. This fail-
ure of the U.N. agency was particularly unfortu-
nate since the budget for the project included fund-
ing for much more suitable, substantial and probably more cost effective equipment.

Despite numerous requests from HI regarding the testing standards of the equipment, the UNMAC refused to discuss the level of protection offered by the equipment it supplied nor would it confirm in person that the equipment met the standards as stated in the U.N. standards. Figure 2 illustrates the PPE issued by the UNMAC to HI deminers in Bosnia in 1997.

Arguments fell on deaf ears, and it soon became obvious that the U.N. was implementing its interna-
tional standards, as they claimed the need for flexibil-
ity that they did not practice. The notion that “whistle blowing” would create difficulties did not go unmo-
ticed by other agencies dependent on U.N. channelled funding or approval in Bosnia. Sadly, the most vocif-
erous of the UNMAC confirmed their protests to bars in Sarajevo on Friday nights. When asked to become part of a unified front to express the con-
cerns of the demining community in a manner that the UNMAC would have to acknowledge, support was sadly lacking.

It would be unfair to assume an absolute equiva-

lence of attitude between institutions and individu-
als. Eddy Banks, one of the World Bank advisors, was attempting to gain some clarification about the whole subject of PPE and injuries and was producing some interesting statistics. In his paper “Protection or De-
ception,” he tried to quantify the benefits (or lack thereof) of various PPE systems used by deminers when they had been involved in accidents in Bosnia. One of his conclusions was that a scientific study in-
volving doctors as well as PPE designers was needed to evaluate the majority of PPE that was in current use and to come up with designs specifically for hu-
manitarian demining. One fact that emerged was that over half of the demining accidents in Bosnia at that time (57 percent) had involved deminers stepping on mines, yet no protection for feet and lower limbs was provided by any organization.

New, Improved Protection?

Despite an apparent lack of tangible concern about PPE, HI based its decision on concrete evidence and sought donors for funds to replace the UNMAC issued PPE in addition to protection for the deminers’ feet. The Irish Government was sympathetic to HI’s requests, and it made funds available for the purchase of improved PPE and foot protection for all field per-
sonnel.

Meanwhile, in the general marketplace for de-
mining equipment, a number of manufacturers had produced and started to market what they termed “humanitarian demining suits.” Most of these units were development prototypes that had never actually

Published by JMU Scholarly Commons, 2000

Figure 1: The original demining suit worn by the Royal Ordnance field evaluation team in Kuwait.

Figure 2: The U.N. issued demining units to Handicap International deminers in Bosnia in 1997.
been tested by deminers carrying out routine duties in realistic environments over normal lengths of time. Investigation revealed that the ‘testing procedure’ for the marketed PPE systems had amounted to little more than having various persons trying them on during focus groups and seminars. This method was not the only source of testing, but it did seem to be the one that carried the most weight among those responsible for setting procurement standards.

As cynical as the above may sound, to be fair, I must admit that I speak from experience. My scepticism is based on my own career as a successful salesperson in the defense industry. Based solely on demining experience, I am well aware of how to influence the decision-makers who purchase PPE. There is rarely enough input from the deminer who has to wear or use the equipment. It is from my experience with both perspectives, the commercial and the end-user, that I come down heavily on the side of developing a system that minimizes the effects of these differing priorities.

During our search for new equipment, one supplier who seemed to be asking the right questions regarding the perceived requirements and who was willing to discuss and develop based on my experience was the actual users was UK-based RBB. A prototype of proposed designs for humanitarian deminers operating in temperate climates was sent to HI in Bosnia, and several deminers wore this kit for regular operations over a number of weeks. Comments were solicited, and a few modifications were discussed. The requirement to protect the head, neck, torso and main arteries in the arms and legs was satisfied by the final modified prototype. The collar of the jacket extends beyond the visor (contrary to U.N. International Standards) in order to deflect blast and debris over the visor and helmet. A visor that extends beyond the collar can, in effect, funnel blast and debris into the deminer’s face. For deminers, the complete system consists of a helmet (V rated at 450 m/s for a 1.102 g fragment), a visor (V50 rated at 600 m/s for a 1.102 g fragment) and protective jacket and wrap around trousers (V50 rated at 475 m/s for a 1.102 g fragment). Figure 3 illustrates the complete system.

The wraparound design of jacket and trousers brings up one important point about our approach to protection for demining personnel, an approach regarding the level of protection that should be offered to the back and sides of deminers. This belief is not universally shared by other organizations. Many argue that the main threat while demining in the kneeling, squatting or standing positions (the most common positions used by deminers despite what SOPs may say) is to the front and to the groin. This fact is not disputed, but when group fragmentation mines, such as the PROM-1 and PMR series of mines, are also present and possibly attached to 10m long tripwires, then the possibility of a fragment hitting other deminers in the vicinity is very real. This scenario would be the case even if spacing between deminers in such circumstances were increased to 50m. It is unlikely that all deminers would, at the time of detonation, be facing the mine when it was activated. In fact, it is possible that a mine in such circumstances may detonate to the rear of several deminers who may be at that moment, standing up.

Based on this argument and supported by what we consider to be “duty of care” for demining personnel; common sense, the PPE used by HI in Bosnia and Kosovo has 360 degrees protection for the head, neck and torso. It also includes integral protection for the upper arms, armpits and groin. With the combination of trousers and jacket worn during demining activities, there is twice the thickness of ballistic material protecting the groin (femoral arteries). The rear panel of the jacket can be removed, if necessary, as dictated by the threat. For field support staff not involved in actual location, neutralization and dismantling of mines, the trousers are optional.

For Bosnia and Kosovo operations, the Americans manufactured Welch’s Blue Boot, which was issued by the U.S. Armed Forces to several of its units. Various other sources of boots were investigated, but the Welch boot appeared to be the most practical. Figure 4 illustrates these boots, which are issued to all demining staff.

The entire system, from head to foot, was developed keeping in mind the obvious limitations imposed by the deminer’s need to move relatively freely, to have vision unimpaired and to maintain a level of physical condition and mental alertness throughout the day. The objective is to achieve the best possible compromise between absolute protection and practical constraints.

What Protection Is Required?

One of the characteristics of Western consumers is that having made a purchase they develop arguments to confirm that the decision to buy a particular product was correct. We are not different in the demining world, and the redaction of “post purchase dissonance” is a factor to be considered. This preconception is why it was somewhat reassuring to see an article about fragmentation injury in the World EOD Gazette, which seemed to confirm that the factors considered in the decision to purchase the PPE were generally sound.

The article concludes that “the NATO STANAG V Test Specification system was never designed to be, nor should it be employed as, a procurement comparison tool.” This statement implies that the object of procurement of PPE should not be purchased to “standard,” but rather purchased to “threat.” Threat analysis is something deminers do know about and are capable of developing and explaining within an essentially shared knowledge framework. In the absence of any other analysis system, it is unlikely that the U.N. International Standards for Humanitarian Demining will deviate from the NATO STANAG set benchmark in the foreseeable future. However inadequate, or indeed unrealistic, the current method of assessing the performance level of materials, it will remain the criteria against which products are judged.

Conclusion

Until some other more suitable criteria for evaluation than the current V rating is developed, those of us who are forced to choose between PPE manufacturers and designs will have to go on educated guesswork. The need is not so much for standards but for measures. Such measures must provide the means to determine the level of PPE appropriate to a given set of actual circumstances and threats. PPE in one situation does not have to look or be exactly like PPE in another, but until operators can explain their choices in coherent and comparative terms, donors, procurement officers and deminers alike will have to live with, in the best case, educated guesswork. In the worse case, deminers will live—or die—according to an all too loose definition of the minimum standard.

Figure 3: The modified demining suit worn by Handicap International deminers in Bosnia and Kosovo.

Figure 4: Welch Blue boots used by Handicap International deminers in Bosnia and Kosovo.
Reducing Accidents in Demining: Achievements in Afghanistan

by James Trenhaye, Department of Mechanical and Materials Engineering, The University of Western Australia

Introduction

A n expatriate military advisor in Bosnia insisted me to write this paper when he explained his opinion that demining accidents were "a statistical certainty." I had just arrived in Bosnia after visiting Pakistan where I had conducted extensive interviews with deminers and their advisors to learn how they had managed to reduce demining accidents. I realized that some of the techniques that the Afghan deminers had devised for themselves were widely applicable.

Two days before, I attended a meeting of demining managers in Bosnia, at which Mine Action Center Director Mr. Filipovic demanded that all demining procedures be followed rigorously. His remark was prompted by a run of fatal accidents involving the feared PROM-1 fragmentation mine in which deminers were not following the Standing Operating Procedures (SOP). His words barely faded when yet another accident occurred for the same reason.

By 1997, demining operations in Afghanistan had acquired a reputation for fatalism and risk taking. With 50 to 60 accidents each year among 2,000 deminers, the Mine Action Program of Afghanist (MAPA) was seen by many in the industry as intrinsically dangerous and, perhaps, out of control. Bill van Ree, the program manager at the time, explained later that Afghan deminers would ask him after a run of accidents, "Mr. Bill, what are you going to do about these accidents?" Yet by 1995, he realized that the accident rate could only be reduced once the deminers accepted partial responsibility for accidents.

It is easy to accept the stereotypical view of the Afghan deminer as a fatalist: "If it is the will of Allah that today I will have an accident, then today I will have an accident." However, Bill van Ree realized that stereotypes can be incorrect and started a complete overhaul of attitudes in the demining program. His successor, Ian Bullpitt, continued this extraordinarily successful effort. In 1998, accidents were reduced by 50 percent from 1997. In the first half of 1999, there were only 10 demining accidents in the entire program. The trend was continuing in 1999, until the third quarter when there was a significant increase in the accident rate—prompting further review of the program. In spite of this increase, the Afghan demining program has achieved an enviable safety improvement that could provide a useful example for other demining programs.

A comparison of accident rates between Afghanistan and Cambodia, which have similar manual demining programs, shows that the accident rate in Afghanistan, before 1997, was much greater than that for Cambodia. However, close analysis reveals that most of the accidents in Afghanistan occurred while deminers were probing and investigating PMN-1 mines. These mines are intrinsically more dangerous than the common PMN-2 mine in Cambodia. Furthermore, the ground conditions in Afghanistan are more likely to lead to probing accidents.

Western Industrial Practice

Industrial practices in the West have led to immense improvements in safety in many industries, including aviation, the chemical industry, the nuclear industry, construction, mining and offshore oil and gas production. All of these industries have devised strategies to minimize accidents. Many lessons have been learned from them.

One of the main lessons is that there is an intrinsic link between safety and quality. The practices leading to high quality work most often lead to safer working conditions. The methods of quality improvement pioneered by Deming and applied so successfully by Japanese companies can also lead to significant safety improvements. "Kaizen," the practice of continuous improvement by small changes, has been widely applied in all these industries.

Another widely applied practice is the distribution of responsibility within teams. Authoritarian models of organizations proved to be inappropriate for achieving high quality and high safety. Industries learned that high quality results could only be achieved through high quality work practices. This goal could not be achieved through rules, regulations and close supervision without the active cooperation of the workforce. By placing more responsibility in the hands of individuals, even to the extent that they could choose their tools and equipment, companies found improved quality, safety and productivity.

Many of these techniques are well documented in industrial literature. They are part of the normal curriculum for industrial engineering students in most Western universities. What surprised me most about this research was the discovery that many of these techniques had been reinvented by Afghan...
demining organizations in response to their safety and quality problems.

Initial Investigations

By 1997, MAPA collected a large database on demining accidents. Each accident is investigated by an independent monitoring agency, and a detailed report is submitted to the mine action program manager. This 30 to 40 page report includes a summary report by the investigators; interviews with the deminer involved; interviews with the supervisor and team leader; reports of an inspection of the accident site with photographs; medical reports from the hospital receiving injured personnel; post-recovery reports on injured personnel; details of injuries with photographs of injured personnel immediately after the accident; and recommendations for procedural changes or protective equipment.

One of the first steps toward reducing accidents was a statistical analysis to discover common factors in the majority of accidents. As a result, it was possible to describe the “typical demining accident.” Such typical accidents could occur at 8:30 a.m. in summer while a deminer was probing a PMN-1 mine or when the deminer was working in a difficult area, such as an irrigation channel, a steep slope, in thick vegetation or in a rainy house. Some factors were false leads. While one might have suspected that deminers would become fatigued in the heat of summer, most accidents occurred before the hottest part of the day.

We became involved on the periphery of this effort, as we worked to devise cost-effective protective equipment for deminers (Trevielyan 1999). We focused on probing accidents and produced prototypes of improved head and face protection visors and helmets, with safety guards to protect hands and an apron to protect the body. We focused on the reasons why most deminers worked in the squattting position, contrary to SOPs that require that deminers lie on the ground while investigating targets. We devised effective protection to enable them to work in the squattting position. We concluded that the squattting position is far more comfortable and probably more effective for ergonomic handling of the metal detector and investigated targets. We also discovered that deminers are reluctant to lie on the ground because it is so difficult to keep their uniforms looking clean. Deminers are widely regarded in Afghanistan as a high status group; they believe that wearing dirty clothes detracts from their status. However, the main priority for mine action program management was avoiding accidents.

Demining Organizations in Afghanistan

The United Nations Office for Coordinating Humanitarian Assistance in Afghanistan (UNOCHA) operates the mine action center at its head office in Islamabad, Pakistan. The program manager, deputy manager, logistics officer and a technical adviser (expatriate staff) are based in the office with an operations manager and Afghan support staff. The main UNOCHA office provides communications, the other expatriates include a technical adviser based with META in Jalalabad and a regional manager based in Kabul. About 4,000 other Afghan staff members work for a number of independent NGOs that implement the mine action program in Afghanistan.

The Monitoring, Evaluation and Training Agency (META), based in Jalalabad, provides training courses for the entire program. As the name suggests, META is an independent agency responsible for accident investigations, monitoring demining quality standards, quality control checks and several other tasks under the general direction of the program manager. Their role in quality control is currently undergoing major restructuring.

The Mine Clearance and Planning Agency (MCPA), with its head office co-located with MAPA in Islamabad, carries out Level 1 and Level 2 surveys and maintains maps and databases for the entire program.

Afghan Technical Consultants (ATC), a UNOCHA partner, is the oldest and largest demining NGO in Afghanistan. Present director Kefayatullah Eblagh established the organization in October 1989. ATC started demining operations in early 1990, with an initial staff of 35. Since then, it has undergone significant change and expansion. ATC has developed into a highly organized and effective NGO employing almost 200 personnel. The head office is in Peshawar, Pakistan.

The Mine Dog Center (MDC) was formed early in the program to train and operate the mine detection dog program, which was also started in 1990. Originally based in Pakistan, MDC has now moved to Kabul.

Two other Afghan NGOs carry out demining operations: the Demining Agency for Afghanistan (DAFA) in Kandahar and the Organization for Mine Clearance and Afghan Rehabilitation (OMAR) in Herat (Maley 1998). HALO Trust is the only foreign demining NGO operating in Kabul and the northern areas where fighting continues.

Mine clearance operations rely primarily on manual demining and use dogs on suitable tasks and mechanical support (backhoes) in residential areas and mined irrigation channels. For more details, refer to Trevielyan (2000).

Organizational Changes

Work procedures

Kefayatullah Eblagh, director of ATC, explained to me that his first step toward reducing accidents was to accept responsibility. ATC is a paramilitary organization modeled in a uniquely Afghan style. The director is not only an authoritative figure but also a caring parent to his entire workforce. He has to assume responsibility for the families of injured or killed deminers. Deminers take their personal problems to the director at any time, and it is a demanding job for any person. ATC has undergone many changes in the effort to reduce accidents and improve quality and safety.

ATC deminers work in teams of 30 men. Each team has 12 breaching parties of two men each. In demining’s early stages, each breaching party consisted of three men. The first man was responsible for using the metal detector; the second man would investigate with a prodder; and the third man would monitor his colleague’s actions.

In the three-man drill, and initially with the two-man drill, deminers were trained in one area. Later, the two-man drill was changed to where each deminer operated the metal detector and investigated the targets he located. This method reduced the chance of incorrectly marked target locations—the suspected cause of several incidents. It should be noted that Afghan deminers use painted rocks to mark mine field boundaries and suspected target locations. Lane boundaries are marked with steel rods and rope. On the other hand, Cambodian deminers always operate on a 0.5m x 1m strip at the end of the lane marked by wooden poles. Though the Cambodian practice takes slightly more time, it is probably safer than the Afghan methods.

The two-man drill was initially introduced to improve efficiency and productivity. The first man would always detect and investigated targets with a prodder while the second man monitored. After 20 to 30 minutes, they would exchange roles. After the second person would take a rest break after a two-hour period.

Four section leaders monitor the actions of the breaching parties and record their work. A team leader monitors the entire team, coordinates transport and handles communications, record keeping and other administrative functions. Each team also has a driver and a paramedic on standby.

One of the first changes made to improve safety was to change the two-man drill. ATC suspected that the deminers needed more rest, so they decided to test a new arrangement in which one man would work for 20 minutes with a metal detector and prodder while his partner rested some distance away. The responsibility for supervision was placed with the section leader. With the deminers resting every 20 minutes and the section leaders sharing each other’s supervision, the rest breaks every two hours were eliminated. The result was a reduced risk of dehydration in the summer heat and greater working efficiency.

Sleep

Lack of sleep was also a suspected cause of fatigue among deminers. The Afghan deminers wake as early as 3:30 a.m. in the summer for dawn prayers, yet they retire at 9:30 p.m. While there was an opportunity to rest between prayers and breakfast, ATC decided that more rest was required. The daily schedule was accordingly rearranged. The original summer time schedule is shown in Table 1. Times are approximate—prayer times depend on sunrise and sunset and other activities are scheduled around prayer times.

Safety Awareness

Accident investigation reports typically emphasized a failure to follow SOPs as the main contributing cause. While deminers often did not follow the correct procedures, this disregard was usually due to...
circumstances at the particular site rather than negligence. This fact does not include the widespread practice of squatting during demining. Some other variations on the SOPs are widely practiced, such as reducing the number of marking stones when marking the location of a metal detector indication. According to deminers, when they are aware of the presence of site managers, staff of higher status or visitors, they revert to SOPs.

ATC recognized that if there was to be any variation in the standard procedures, the implications had to be examined first. Therefore, they decided to implement a daily meeting among the deminers to discuss safety and the need for special procedures at the particular site. The daily safety briefing was used to review and discuss safety hazards or technical problems at the site. Deminers could voice their own opinions to their team leader and also report "near misses." A further move to increase rest breaks and reduce fatigue was to place restrictions on weekend leave for deminers. Deminers are normally based at camps close to the work site. Three teams and a resident site manager are normally based together at the same camp called a "project site." ATC decided that deminers would not be allowed to travel home on the weekend.

Other problems prior to this decision included the following:

<table>
<thead>
<tr>
<th>First Summer Schedule Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:00 a.m. Wake, prepare for prayers</td>
</tr>
<tr>
<td>4:30 a.m. Breakfast</td>
</tr>
<tr>
<td>5:30 a.m. Morning parade, prayer for safety, address by site manager</td>
</tr>
<tr>
<td>6:00 a.m. Depart for work site (about one hour transit)</td>
</tr>
<tr>
<td>8:30 a.m. Commence work</td>
</tr>
<tr>
<td>10:00 a.m. 1st Break</td>
</tr>
<tr>
<td>11:00 a.m. 2nd Break</td>
</tr>
<tr>
<td>1:30 p.m. Finishes work in mine field, prayers, return to camp</td>
</tr>
<tr>
<td>2:00 p.m. Lunch</td>
</tr>
<tr>
<td>3:30 p.m. Afternoon prayer, equipment maintenance</td>
</tr>
<tr>
<td>6:00 p.m. Sunset prayer</td>
</tr>
<tr>
<td>6:30 p.m. Dinner</td>
</tr>
<tr>
<td>7:30 p.m. Evening prayer</td>
</tr>
<tr>
<td>9:30 p.m. Bed and lights out</td>
</tr>
<tr>
<td>10:30 p.m. Radio shut-down</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revised Summer Schedule to improve sleep pattern Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:00 a.m. Wake, prepare for prayers</td>
</tr>
<tr>
<td>4:30 a.m. Breakfast</td>
</tr>
<tr>
<td>5:30 a.m. Morning parade, prayer for safety, address by site manager</td>
</tr>
<tr>
<td>6:00 a.m. Depart for work site (approx. half hour transit)</td>
</tr>
<tr>
<td>6:30 a.m. Commence work</td>
</tr>
<tr>
<td>12:30 p.m. Finish work at mine field, on-site safety review</td>
</tr>
<tr>
<td>1:00 p.m. Return to camp, prayers</td>
</tr>
<tr>
<td>1:30 p.m. Lunch</td>
</tr>
<tr>
<td>2:00 p.m. Compulsory sleep</td>
</tr>
<tr>
<td>4:00 p.m. Afternoon prayer</td>
</tr>
<tr>
<td>4:15 p.m. Training session, review of operations, daily activity reports, equipment maintenance</td>
</tr>
<tr>
<td>6:00 p.m. Sunset prayer</td>
</tr>
<tr>
<td>6:30 p.m. Dinner</td>
</tr>
<tr>
<td>7:30 p.m. Evening prayer</td>
</tr>
<tr>
<td>9:30 p.m. Bed and lights out</td>
</tr>
<tr>
<td>10:30 p.m. Radio shut-down</td>
</tr>
</tbody>
</table>

Directions. It is not uncommon for the section leader simply to give up and let the deminer take responsibility for his own safety.

To reduce the chance of this occurrence, ATC decided to demote and decrease the pay of section and team leaders who were responsible for an accident, which could only be restored following an investigation clearing them of wrongdoing. To implement this procedure, ATC required prompt feedback on the causes of an accident. META required several weeks and even months to complete its accident report. Thus, ATC had to have its own investigation capability. ATC was delegated for accident investigation whenever the need arose. Typically, the site manager and two section leaders from other teams are assigned to an investigation.

Changing the culture

Just as experience in Western industries has shown, it is necessary to change the culture of an authoritarian organization to obtain significant safety and quality improvements. Responsibility has to be delegated and shared appropriately at different levels in the organization. Deminers need a level of discretion in deciding how to approach each task. It is not possible to devise foolproof procedures for every conceivable mine field situation. Afghan culture tends to resist centralized authority; so, it is remarkable that organizations as large as ATC can operate with such high levels of reliability. This activity is more remarkable when one realizes that the demining organizations are practically the only sign of a large-scale, disciplined organization in the entire country. They operate in a vacuum surrounded by chaos, disintegration, extreme poverty and deprivation. The social institutions we take for granted in Western countries simply do not exist in Afghanistan. There is usually no electric power, police force, coherently organized system of justice, social security, post office nor any telephones.

Sharing responsibility could be regarded as foolishly bad in these circumstances. Yet the experiences of ATC show that it is possible and has led to significant safety improvements. The other demining organizations adopted many of the changes pioneered by ATC.

The Views of Deminers

As part of research on the technological needs of deminers, we interviewed several deminers and staff in different organizations. Some of their opinions and quotes make interesting and informative reading.

An operations manager based in Peshawar said, "The only time I experience a bad day in my job is when I receive a report of an accident in a mine field. That is a very depressing experience. Fortunately, we are making big improvements. In the first six months of 1997, we had 17 accidents. In the same period of 1988, we had seven accidents. This year (1999), we have had only one accident in the same period. I am still concerned about July—it is the hottest month of the year and a bad time for accidents."

One deminer said, "One of the teams at our site had two accidents last month. One of the deminers had several arguments with his partner. His original partner had fallen sick and had gone home for several weeks leave. The new partner did not get on with him at all. Then there was an accident. I do not know what the cause was, but I am sure that if they had not been arguing the accident would not have happened. In my team, if a deminer is upset or angry, he is not allowed to work that day. Even though it is harder to keep up with the schedule, we feel safer that way. Also, deminers are less likely to be angry or upset if they know that all the rest of the team has to make up for their work."

Another deminer said, "One of our problems is that we are always being asked to work faster. We have heard that teams which work too slowly may not get any work contracts. It is difficult when you work in a mine field with many fragments and you can only work slowly in this kind of mine field."

A third deminer remarked, "The safety meetings are a good idea. We discuss mistakes to make sure the work is done correctly. People forget the correct procedures, and when the problem is discussed, we remember our training. Sometimes, I mention mistakes I have made myself. Often, I only tell them to my friend or colleagues. My friends in my rent, and I give thanks to God that I am safe, and I try and tell them not to do it again. Sometimes I also tell the team leader but not always. The team leader says, 'please be careful and don't do that again.'"

Training

The Afghanistan demining program has a highly organized system of training deminers and provides them with refresher courses every six months. META runs separate training courses for supervisors, team leaders, UXO specialists and communications. ATC also runs many internal training courses for its staff. English classes are provided both for administration and demining personnel. Nearly all of the administration staff is computer trained. Many other special-
ized training courses have been run, using both internal and external instructors. The level of training has reached the point where a significant number of ATC staff are being recruited by international demining agencies for work in other countries. ATC deminers, supervisors and administration staff are now working in Iraq, Somalia and elsewhere.

Comparison with Western Practice

We can see several significant parallels between the changes introduced to ATC and those in industries. ATC devises significant resources to improve its workforce. Apart from support for deminers' families and help with personal crises, the organization provides significant training and career development opportunities for its staff.

Responsibility is delegated across the organization, rather than being concentrated at the top. Team leaders, supervisors and deminers all contribute to discussions on safety and the techniques that should be used to deal with particular mine field problems. Team leaders and supervisors carry significant responsibility and pay the penalty if an accident occurs in their team.

Safety and consciousness are reinforced daily at the safety briefings. Deminers are not allowed to forget the need to constantly be careful to avoid accidents. The organization pays careful attention to the health and well being of deminers. While recognizing the importance of home leave, discipline is imposed to ensure that deminers are in top physical condition for the required job. In contrast to the stereotypical image of an Afghan deminer, all employees accept that accidents have human causes and can be prevented. An accident represents organizational failure as much as human failure.

Further Improvements

There are generally three classes of accidents in demining. One class occurs while a mine is being investigated or destroyed. Another class occurs because deminers walk on a mine that has been overlooked. The third class occurs when deminers walk in areas that have not yet been cleared.

Understanding these classes leads to the close link between safety and quality in demining, as in any other industry. If a deminer steps on an overlooked mine, he is the victim of poor quality work by other deminers or possibly his own poor work. It is this link that is currently being targeted in MAPA in a major overhaul of quality assurance procedures.

Currently, deminers check their work in an informal manner. As one deminer walks forward to resume work at the end of a lane, he sweeps his detector from side-to-side to check for overlooked metal targets. From our observations of deminers working in a simulated mine field in Islamabad, Pakistan, this checking is not very thorough, but it does reveal missed targets. After completing the clearance of a significant area, deminers may check the area once again with a metal detector.

In a carefully documented test, we observed an instance of a serious error which could lead to accidents. When one deminer has finished working at the end of a lane, he usually marks the last position cleared with a painted stone or by leaving his detector lying across the lane at the end of the safe area. We observed how one deminer located a metal target forward of his position and on the left-hand side of the lane. After he had located the metal fragment, he marked the target location with a stone. His partner thought that the stone marked the end of the safe area. As the diagram shows, it did not — it marked the location of the last target removed. The area to the right of the stone had not been cleared, but the second deminer missed this area, which happened to contain two targets that could have been easily discovered with a metal detector. The targets were missed again when they carried out a final check of the area.

In an effort to overcome errors such as these examples, Afghan demining NGOs are working on a system of comprehensive quality checking. It has been proposed that each deminer thoroughly check the ground cleared by his partner in the most recent spell. The partner will commence checking at the point at which he last worked and work forward until he reaches the end of the area his partner cleared. Each section leader will conduct a comprehensive check of the area cleared by the deminers working under him. Finally, the team leader will check 25 percent of the area cleared by the team. This procedure will add significant costs to clearance operations. It is clearly impractical for a supervisor to check ground adjacent to where deminers are currently working. Further, the supervisor cannot do the checking while he is expected to supervise deminers at the same time. Approximate calculations suggest that the extra work involved will add perhaps 10 percent to the cost of clearance. However, this reflects a significant emphasis on safety and quality and will reduce the amount of reworking required. Another important issue is the quality of work the initial deminer performs.

The comprehensive checking procedure described above may not improve the quality of the initial demining without significant incentives. If deminers know that the area they have cleared is going to be checked again, they may think that it is okay to leave a target unchecked every now and again. On the other hand, especially if there is some degree of embarrassment or penalty associated with the discovery of a target missed by a deminer, working standards could improve. Finally, it is necessary to remember that this proposal has been stimulated by a significant rise in the accident rate after a long period of decline. It is possible that this increase reflects a common industrial problem. Major changes to work practices that improve safety have a limited lifetime. After a while, workers develop a false sense of security and stop paying as much attention to their work practices. It is necessary to introduce further changes to avoid this risk.

Acknowledgements and Principal Sources

Much of the material for this paper was obtained through interviews with Elbagh between June 1997 and January 2000. Other material was gathered from interviews with deminers, senior staff of demining agencies and expatriate technical advisers and program managers of MAPA. Their assistance is gratefully acknowledged. For further details, readers are asked to contact the author or the MAPA head office in Islamabad, Pakistan.

Some additional material was obtained from interviews with staff and deminers in Bosnia Herzegovina and Croatia in August 1999. Their assistance is also gratefully acknowledged.

Most of our work is supported financially by the Night Vision and Electronic Sensors Directorate of the U.S. Army at Fort Belvoir, Virginia. The author would like to acknowledge contributions from colleagues Hameed and Ali Research Center, the demining personnel who have helped with this research, Sabiha Tili and Sumin Taemien and her family.

Other Sources

Trevelyan, J. P. (2000) Demining Research at University of Western Australia, CD-ROM and web site, Department of Mechanical and Materials Engineering, The University of Western Australia.

Contact Information

James Trevelyan
Department of Mechanical and Materials Engineering
The University of Western Australia
Nedlands 6007
E-mail: james@mech.uwa.edu.au
Website: www.mech.uwa.edu.au/jpt/demining/
DEVELOPMENT OF A PROCEDURE

by Cameron R. Bass, University of Virginia

Introduction

The human toll from AP mines is large. The United Nations estimates that there are over 100 million AP mines deployed worldwide (U.N. 2000). An estimated 20,000 civilians die each year from landmine explosions. Thousands more are wounded and maimed. As there is still no inexpensive and reliable mechanical technique for removing AP mines, human deminers will be used in the foreseeable future to protect the general population from the menace of landmines.

To decrease the human toll from demining, protective equipment should be used. For comprehensive protection, the demining ensemble may include head/face protection, thorax protection and extremity protection, including gloves and boots as shown in Figure 1. This ensemble offers the potential for substantial protection against fragments, blunt force trauma, burns and other consequences of mine blasts. However, without some objective procedure to evaluate the risk of injury while wearing protective gear, the design of such demining equipment is guesswork. Indeed, without an effective injury evaluation technique, protective equipment may exacerbate certain types of injury. For example, the introduction of body armor in Northern Ireland for protection against blast fragments may have increased the potential for blast lung injuries (Mellor 1989).

One technique that has been shown to be effective in the automobile industry is the use of an instrumented surrogate (dummy) to evaluate the risk of injury from blunt trauma in automobile crashes. Elements of this technique include the following:

- **Biologic surrogate** - A dummy that is robust, gives a repeatable physical response and responds in a human manner. A dummy may be physically very simple and may only represent a part of a human. For example, an instrumented beam has been used success fully to represent an arm (Bass 1997). However, dummies may be very complex, such as the anthropomorphically-correct dummies developed for the automobile industry. Generally, a surrogate should be as simple as possible while still representing the relevant human response.

- **Engineering measurement** - A physical parameter such as force or acceleration that may be used to quantify the physical response of the dummy. Dummies may be instrumented to produce accepted or proposed injury criteria.

- **Injury risk evaluation** - A correlation between an engineering measurement and some injury model. For example, in frontal thoracic blunt impacts, an injury threshold of 60 times the force of gravity is used in the automobile industry.

- **Validation by injury model** - A correlation between the injury risk evaluation and a physical model of injury. 1) Epidemiology or physical reconstruction of an actual injury event; 2) An animal injury model; or 3) A cadaver human injury model as shown in Figure 2. Development of Surrogate Injury Model

For Evaluating Demining Protective Equipment

Widespread use of this technique has saved thousands of lives per year in the automobile industry. As there are similarities in human blunt trauma in an automobile crash and in a blast event, this technique may be adapted to evaluate injury from mine blasts.

Development of Procedure

The goal in the current study is to develop a procedure to evaluate injuries from mine blasts, borrowing tools from existing techniques when appropriate. This approach will result in an objective test criterion for the evaluation of the injury risk of a human wearing a protective demining ensemble. It will allow injury risk evaluation for protected or unprotected subjects and will indicate the relative levels of protection for subjects wearing different protective equipment.

For decades, work has been performed on human injury from blunt trauma in the automobile field. Simulated automobile crashes are performed, and the response of the dummy is taken to represent the response of a human in that crash scenario. This dummy response may be used in an injury model to assess the risk of injury for that crash scenario.

The tools used in the automobile industry, however, may not be directly applicable to mine blasts for two reasons. First, automobile crashes and mine blasts are substantially different physical phenomena. While both automobile crashes and mine blasts may involve blunt head and chest trauma, mine blasts may have substantial shock wave effects, burns and other blast phenomena. Second, the events may occur on significantly different time scales. Injuries in mine blasts may occur 10 to 100 times faster than those in automobile crashes. These timescales have an effect on dummy response, and the timescale of mine blast injuries may be outside the validity of the injury models used in the automobile industry. So, tools used in the automobile industry must be adapted for use in mine blast testing to effectively assess the risk of injury while wearing protective ensembles.

Another important element in the effective design and evaluation of protection from injury is the epidemiology of the occurrence of those injuries in the field. Initial efforts to categorize injuries from humanization deminers (Landmine 2000) have identified the most significant injuries from mine blasts. Epidemiology, however, is a moving target, and future efforts to categorize ongoing injuries and their causes are crucial. For instance, the use of protective features may change the types of injuries experienced and could warrant changes in the focus of injury protection. A clear example of this case came with the widespread use of automobile driver-side air bag restraints. Use of such systems resulted in a substantial decrease in fatal head and thorax trauma, but it also led to an increase in the importance of debilitating leg injuries.

The types of injuries encountered in a number of demining incidents have been summarized in a groundbreaking report (Landmine 2000) as shown in Figure 3. Fatal injuries include blunt trauma to the head and chest, including blast lung, shock and multi-system trauma. Non-fatal injuries include cervical spine injury, chest injuries, abdominal injuries, hemorrhage, shock and presisting injury. Unknowns are injuries that could not be properly categorized.
multisystem trauma. Blast injuries may also include blast-induced trauma to hearing, burns and trauma from whole body translations with injury patterns similar to falls. To provide a realistic assessment of injury from mine blasts, all of these injuries must be included in the injury risk model.

Simulation of a realistic test condition is especially important in mine blast testing. A high-speed photograph of a simulated mine blast with two dummies is shown in Figure 4. The force on a human chest or head is related to the pressure from the blast waves. Since pressure falls as the inverse cube of the distance from the blast, the dummy position in the blast is vitally important in a realistic simulation. A field survey found that 91 percent of demining blast injuries occur with the victim within one meter of the mine (Landmine 2000). It is clear, however, that close enough to a large mine blast there may be substantial injury using any PPE. So, a balance must be maintained between the desire for test realism and the desire to evaluate the worst case in mine blast injuries.

Modeling the mine blast itself is a complicated issue. Nominally identical mines may have widely different behaviors, and blast characteristics may change considerably, depending on soil and environmental conditions. Also, real mines may be difficult to obtain in quantity and to handle safely. To develop an objective test procedure, we want a test condition that is realistic yet repeatable—a balance that limits the number of tests and cost necessary to effectively characterize the performance of protective equipment. This argument suggests that mines should be simulated with a relatively well-characterized explosive plastic and be imploded in a well-characterized soil. Several blast energies may be used to simulate the range of energies expected with actual mines. The selection of simulated mine blast energy should build on ongoing efforts to correlate blast properties of actual and simulated mines (Bergeron 2000).

Several dummies exist that may be appropriate for mine blast testing. One widely validated dummy that may be particularly useful in estimating the risk of frontal blunt trauma in the Hybrid III dummy shown in Figure 5. The dummy pictured is the size of a normal U.S. male, but scaled dummies exist for the small females and large males. Used in automobile crash testing, this dummy is widely validated in frontal blunt impacts for both head and chest injuries. It may be positioned using articulated joints. The Hybrid III may be instrumented with acceleration-sensing and force-sensing transducers. Through the dummy does not have a completely biofidelic response, the data from these transducers may be used with accepted injury thresholds and risk functions to determine the risk of injury in a given test condition. As changes in anthropometry may change risk of injury, for an accurate response, the dummy selected should be representative of the population modeled. Worldwide anthropometry of the average male is shown in Figure 6 (Jurgens 1990). If the distance of the body to the mine when demining is taken to be roughly proportional to the mean reach (arm length),

Selected Worldwide 50th Percentile Male Stature and Reach

Figure 6

<table>
<thead>
<tr>
<th>Stature</th>
<th>Reach (Fingertips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>175 cm</td>
<td>170 cm</td>
</tr>
<tr>
<td>180 cm</td>
<td>185 cm</td>
</tr>
<tr>
<td>185 cm</td>
<td>190 cm</td>
</tr>
</tbody>
</table>

The average Southeast Asian male is approximately 70 mm closer to the blast than the average North American male. This distance may substantially increase the risk of head or thorax injury in demining for the average Southeast Asian male deminer. As there are large numbers of mines in West Africa and Southeast Asia where the people have relatively short arms and/or are of small stature, the small Hybrid III dummy should be incorporated into mine protective equipment testing.

To summarize, essential elements in the development of a procedure for evaluating the risk of injury while wearing demining protective equipment are:

- A robust dummy with established and applicable injury criteria in positions representative of demining (i.e., kneeling, prone, standing, etc.).
- Robust instrumentation—data handling consistent with the response.
- Accurate positioning—distance to mine must be consistent and quantified.
- Repeatable, quantifiable threat (mine) with fixed burial and soil characteristics. Each of these elements acts to provide an objective criterion for injury risk while ensuring that the resulting criterion is as applicable as possible to the conditions experienced in the real world.

Existing Human Injury Criteria

Preliminary tests were performed using dummies with protective ensembles and simulated mines. The mines were plastic explosive with 200g C-4, 100g C-4, and 50g C-4. These devices were found to be comparable in blast energies to a wide range of existing mine types (Bergeron 2000). The dummy used was a Hybrid III 50th percentile male dummy or equivalent.

From the database of existing injuries, the types of injuries evaluated should be blunt head trauma, blunt neck trauma, blunt thorax trauma, blast lung, blast-induced hearing damage and burns. Blunt injuries can also evaluate the potential for "full" type injuries caused by whole body displacement from blasts. All of these injury types except burns were evaluated in the preliminary test series.

Blunt Trauma Head Injuries

As discussed above, fatalities from head injuries are very significant in mine blasts. These injuries may be caused by direct blast impingement on the head. One simple surrogate for the risk of head injury from force experienced by the dummy head is the peak acceleration at the center of the dummy head. This surrogate has the advantage of being easily measured, and existing injury criteria use this measurement. One injury criterion commonly used with the Hybrid III dummy head/neck complex in frontal impacts is the Head Impact Criterion (HIC) for concussive head injury (Venarce 1971). HIC includes the effect of head acceleration and duration; a HIC value of 1000 is specified as the level for onset of severe head injury. Physically, HIC predicts that large accelerations may be tolerated for short times. HIC is based on human cadaver and animal impact data with durations that are usually one millisecond or greater.

HIC values obtained in mine blast testing are shown in Figure 7 for mine blast strengths of 50g C-4, 100g C-4 and 200g C-4. Several tests with 200g C-4 showed potentially injurious levels of HIC, one near a value of 10,000, which is presumably a fatal injury. For several tests in this series, however, the duration of the acceleration peak was substantially shorter than the usual value of HIC duration (≈ one millisecond). This result suggests that the data on which HIC is based must be reevaluated for use with mine blasts and that the resulting injury model must be validated with a physical injury model.
with protective helmets and suits showed potentially
injurious levels of neck bending. All but one test that
exceeded the injury threshold had the largest simul-
ated mine (200g). The 50g test that showed injuri-
ous neck moments may be attributed to a loose Hy-
brid III neck for that test. Paradoxically, the use of a
protective suit and helmet generally resulted in higher
neck moments than when no protective equipment
was used. This tendency likely is the result of the in-
crease of surface area exposed to the blast when us-
ing the protective gear.

Blunt Trauma Thorax Injuries

The blast pressure wave and following pressure
wave from the detonation of a mine have the poten-
tial to produce severe blunt trauma to a human tho-
rax in proximity to the blast. Metz and Gadd (1971)
developed acceleration injury criteria for blunt
trauma to the human thorax. This injury tolerance
is 60g limit over a three ms duration. As with the
head, acceleration may be taken as a proxy for the
global force experienced by a thorax.

Representative chest accelerations from the pre-
liminary test series are shown in Figure 9. As ex-
pected, the most severe chest accelerations occurred
with no protective suit while the least severe occurred
at the lowest level of mine blast (50g) with the pro-
tective equipment. This injury criterion does not
include other possibly significant effects, such as chest
compression injuries or blast lung injuries. However,
these factors may be included using other measure-
ments.

Blunt Chest Injury Criterion for Surrogate Mines with Hybrid III
Dummies Figure 9

Blast Overpressure Injuries

There is a substantial risk of blast overpressure
injuries, either blast lung or blast-induced hearing
injuries, when at a close distance to AP mine blasts.
However, the usual instrumentation of the Hybrid III
dummy does not include any assessment of the effects
of blast overpressure, either in the head or the chest.

So, in preliminary testing, a pressure sensor was
mounted on the surface of the chest to evaluate the
potential for blast lung injuries, and another pressure
sensor was mounted in the head at the location of the
car to evaluate the potential for hearing damage.
The evaluation of blast wave injuries is important since
additional protective equipment for the thorax may
exacerbate blast overpressure injuries.

Pressure profiles seen in the preliminary testing are
similar to a typical ideal shock wave with a nearly
instantaneous rise to peak pressure with exponential
decay. Peak external pressure vs. duration for the
thorax is shown in Figure 10. This data is compared with
the classic threshold, one percent fatal, and 50 per-
cent fatal free field curves taken from classic work by
B Bowen et al. (1968). While several of the tests with
50g and 100g C-4 show potential lung injuries at the
threshold level, only the 200g C-4 simulated mines
show greater than one percent fatalities on this scale.

Future tests should incorporate additional pres-
sure sensors in the thorax and head to minimize the
potential for spurious pressure results. In addition, as
the injury criterion used a free field blast value for
plane waves, an assessment should be made of the ef-
facts of differences between the ideal blast wave and
local blast shock for AP mines.

Burns

As mine blasts involve explosive deflagration,
there is a significant potential for burns close to mine
blast. The mechanism for this injury is rapid radi-
ant and convective heat transfer to the skin. Predic-
tive criteria exist for such flash burns; in 1969, the
Naval Materials Laboratory developed a skin simu-
late for evaluating injuries caused by thermal inju-
ses (Derkson 1969). The technique uses a thick plastic
resin with an embedded thermocouple. The tempera-
ture output of the thermocouple was correlated with
human injury 120 mm below a living skin surface.
A temperature of 44 degrees Celsius was derived as the
threshold for such transdermal injury.

In future tests, thermocouple sensors should be
embedded in the dummy skin at the thorax, head and
extremities to determine the risk of thermal injuries.
This method is especially useful in the unprotected
reference tests to provide a baseline for the compari-
on of the effectiveness of the protective ensemble for
burn prevention.

Conclusions

Mine blasts are forceful events for which there
is significant risk of injury, even while wearing pro-
tective equipment. To provide the most effective prac-
tical protection, a procedure must be developed to ob-
ectively and systematically evaluate protective
demining equipment. Such a procedure is proposed in
this study.

To avoid long development and high costs asso-
ciated with the development of a completely new
test procedure, this procedure builds on techniques
currently used in the automobile industry to evalu-
ate risk of injury from blunt force trauma in auto-
mobile crashes. The technique includes the use of
Hybrid III dummies in testing with injury criteria
adapted from accepted injury risk tolerances. Mine
blasts are simulated in repeatable conditions for the
rapid and inexpensive evaluation of a wide range of
blast conditions.

Injuries modeled in this procedure include blast
trauma to the head and chest, neck injuries, blast lung
and blast-induced hearing damage and thermal inju-
ses. For these injuries, existing injury criteria may
be evaluated using the Hybrid III dummy or injury cri-
teria can be adapted for use with the Hybrid III
dummy.

Preliminary tests have been performed that sug-
gram the need for augmented instrumentation and
valation using an appropriate physical injury model.
These tests suggest that AP mine blasts may be inju-
rrious or fatal even with protective headgear and body
armor. Further work is needed to characterize the
robustness, repeatability and applicability of this
promising technique for the evaluation of personal
protective systems for demining.

References

C.R. Bass, S.M. Duma, J.R. Crandall, W.D.
Pilkey, N. Khawpong, R.H. Eppinger, and S. Kupp,
Interaction of Air Bags with Cadaveric Upper Ex-
tremities, SAE Transactions: Journal of Passenger Cars,
D. Bergeron, Personal communication, May
2000.
I.G. Bowen, E.R. Feltcher, and D.R. Richmond,
Estimate of Man’s Tolerance to Direct Effects of Air
Blas, Technical Progress Report, DASA-2113, De-
fense Atomic Support Agency, Department of De-
W. Derksen, D. Delhery, T. Monahan, Thermal
and Optical Properties of the NML Skin Simitlant,
Final Report SP-001-05-11, DASA 1169, AD-
235460, Naval Material Laboratory, Naval Shipyard,
International Data on Anthropometry, Occupational
and Health Series, vol. 65, International Labor Office,

Landmine Casualty Data Report: Deminer In-
S.G Mellor and G.J. Cooper, Analysis of 828 Ser-
vicemen Killed or Injured by Explosion in Northern
Ireland 1970-1984: the Hostile Action Casualty Sys-
tem, British Journal of Surgery, vol. 76, pp. 1006-
1010, 1989.
H. Metz and C.W. Gadd, Thoracic Tolerance
To Whole Body Deceleration, SAE Paper Number
710852, Society of Automotive Engineers, War-
rendale, PA, 1971.
J. Versace, A Review of the Severity Index, Pro-
cceedings of the Fifteenth Sapp Car Crash

Contact Information

Cameron R. Bass
Impact Biomechanics Program
University of Virginia
1011 Linden Avenue
Charlottesville, VA 22902
Manual Demining in Afghanistan

by Kefayatullah Ebiagh, Director, Afghan Technical Consultants (ATC)

Afghan Technical Consultants (ATC) is the oldest, largest non-profit and NGO for humanitarian mine clearance in Afghanistan. The present director, Kefayatullah Ebiagh, established it in October 1989. ATC started demining operations in early 1990, with an initial staff of 35. Since then, it has undergone significant change and expansion. ATC has developed into a highly organized and effective NGO, employing about 1,300 personnel. ATC operates under the auspices of the United Nations Office for the Coordination of Humanitarian Assistance to Afghanistan (UNOCHA) and removes ordnance from both mined areas and former battlefields. ATC also promotes mine awareness for the people living near contaminated areas, as they are exposed to the greatest risk.

The organization has run the following techniques in mine/UXO clearance activities in a decade of operation: Manual Mine Clearance; Mechanical Mine Clearance using flail machines; Mechanical Mine Clearance using Backhoe machines; Mechanical Mine Clearance using Excavators; Battl Area Clearance (BAC); and Explosive Ordnance Disposal (EOD).

ATC consists of the following sources: 24 Manual Clearance Teams of 30 people each; four EOD Teams with six operators and one team leader each; and three Mechanical Teams of 13 operational staff each.

Since 1989, ATC has deployed its teams in 20 provinces of Afghanistan and has cleared more than 70 square kilometres of mine fields and 146 sq. km of battle areas. In the course of its operations, ATC Teams have located and destroyed the following devices:

- Anti-tank (AT) mines: 2,560
- Anti-personnel (AP) mines: 172,230
- Unexploded ordnance: 483,610

Based on information collected from the cleared areas, 7,500,000 individuals have been directly/indirectly benefited from ATC operations.

Because family loyalties and ties are very strong in Afghanistan, the deminer may not only have to support his wife and children, but he also may have to support his parents, brothers, sisters and cousins. Up to 20 people may be supported by the pay of one deminer.

Motivating and Sustaining a Manual Deminer

The first goal of a deminer is to obtain money to support his family. Because of the extreme shortage of jobs in Afghanistan, the deminer is often the only breadwinner in the family.

The second consideration is that the work undertaken by the deminer is for the good of the country. It is still considered a continuation of the Jihad (holy war), which was originally declared against the Russians when they invaded in 1979. Afghanistan is a strongly Islamic country, and Islam emphasizes family values and service to others. The Koran teaches: "He who saves a life, saves the world." These two principles of family service and service to others motivate the deminers to work on a task which, at times, is extremely tiring, repetitive and boring but is also very dangerous. Many deminers have been working in demining for 10 years (from the start of the program) and have put up with many hardships for the sake of their families and fellow countrymen.

Manual Demining: Still the Best System We Have

Manual demining is still the best system currently in use because it has been proven that the current generation of mine clearance machines can only clear to an 80 percent certainty at best, whereas manual demining can give a 99 percent certainty.

The flail was first invented in 1942, during World War II, and apart from improvements to the prime mover, it has changed very little. The original flail machine (mounted on a Matilda or Sherman tank) was designed to remove most AT mines, but in the wartime situation, it was accepted that some mines would be missed, and as a result, some casualties would be suffered. These war casualties were considered acceptable and inevitable. In humanitarian demining, no casualties among the deminers or civilians are similarly accepted. Other mechanical methods have yet to prove that they can clear to the acceptable standard of 99.6 percent.

Manual demining is often clear flat and level areas quite successfully, but often, they miss areas where the ground is uneven, and very few machines can work successfully on slopes. Manual demining is slow and tedious, but it guarantees coverage of every square centimeter of ground, and it is easy for the supervisory staff to undertake a quality control check of the ground during and after clearance to ensure complete coverage and removal of all metallic indications. Manual demining methods have proven successful on all types of terrain— unlike machines, which cannot be used on many surfaces, such as the soft paddy fields of Cambodia or the defensive mine fields on the hillsides in Afghanistan.

Dogs have proven quite successful in Afghanistan for clearing roads, low density mine fields containing minimal metal AT or AP mines (Chineses Type 72A, Italian TS 50, VS 50 Pakistan P2 and P4 AP mines, M19 US/Iranian, TC-6 Italian or P2 or P3 Pakistani AT) and performing area reduction during survey. Dogs have limitations, as they are not used against "high density" mine fields because they become confused by the multiple "scents" and have difficulty zeroing-in on a specific indication.

Machines such as the Armored Backhoe excavator have proven very useful in Afghanistan for excavating rubble from collapsed buildings, where several layers of mines have often been buried, or discovering filled-in irrigation canals, which are overgrown with vegetation and may have multiple mine layers. The excavator spreads the ground by the bucketful in a clear area where it still requires checking by the manual deminers. Prior to the use of backhoes, manual demining of collapsed buildings and filled-in irrigation canals were extremely slow, not cost effective and caused many accidents among deminers. The Armored Backhoes have proven to be successful and have been a useful supplementary aid and substitute for manual demining in all situations.
ATC used two flail machines from 1990 to 1995, but though they were reasonably successful in clearing mine fields on flat areas of land, they were prone to breakdown, and the facilities in Afghanistan were not in place to undertake major repairs. As a result of these problems, the flails were removed from service, as they were not cost effective.

Manual Demining Needs to be Made Safer, Faster and More Productive

Manual demining can only be made safer, faster and more productive if there is a significant change in detection technology, and until this happens, the process toward greater productivity will not advance quickly. The current range of mine detectors includes only extremely sensitive metal detectors. This narrow range is the crux of the problem. The metal detector picks up indications from the metallic components of the mine, but it cannot differentiate these readings from readings given by other metallic items, such as cartridge cases, shell fragments, nails and ring pulls from soft drink cans. Statistics show that for mine fields cleared by ATC, there are approximately 450 metallic indications, which have to be investigated for every mine located. Each of these indications has to be carefully prodded and investigated. Though the probability is high that the reading is not a mine, the results of being wrong prove to be quite devastating for the deminer. Many injuries have occurred when the deminer has assumed, after many “false alarms,” that the AP mine he is investigating is just another piece of scrapmetal.

In certain instances, clearance of dense vegetation or rubble using a machine can speed up the process (the use of a backhoe is a good example), but the ground still has to be checked using manual mine detection methods to ensure a 99.6 percent clearance certainty. It is likely that the only real solution to the problem would be a detector that will only detect the explosive contained within the mine. A ground X-ray system or ground penetrating radar could be used and would be man portable. It would give sufficient clarity to differentiate a mine from a buried stone or other buried objects. It would be of no use to produce a detector that would give as many false alarms as a metal detector. The deminer must be able to tell a stone from a mine, especially in the rocky fields of Afghanistan. In addition, a detector must be relatively cheap, robust, easy to use and easy to repair. It would not also be efficient to replace a conventional mine detector with a machine, which may cost 10 times more than a detector and is complex, easily breaks down and has to be sent back to the manufacturer or a specialized laboratory for repair. Such a machine would mean a reduction in demining staff due to limited funds and money not being put back into the country’s economy through the deminers’ pay. Fewer deminers would mean fewer self-supporting families and more families reliant on foreign aid.

One new promising technology is the use of a remote airborne sensing system using small dirigibles at night to detect mines through “thermal imaging” (i.e., the heat signature given off by the mine is different from that of the surrounding soil at night). Such a system, along with an accurate plotting system with recognizable marker posts, would accurately define the position of each individual mine and the extent of the mined area. The deminer could go straight to the position of the mine while ignoring the ground between the mine and the edge of the suspect mine field.

If remote airborne sensing proves successful, it would bring mine clearance to the immediate post-World War II success rates where the mine field clearance parties were able to cover vast areas each day (in comparison to today’s rate). This capability was a result of each mine having been accurately plotted and recorded by the personnel laying the mines.

Manual Demining Training and Management Can be Improved

Our experience in Afghanistan shows that manual demining training can be improved by drill repetitions, which are taught until the deminer perfects every drill and each action becomes instinctive. It is very important to select several training areas that resemble actual mine fields being cleared. It is easy to practice clearance on a flat field with little vegetation, but demining is difficult when faced with steep slopes and dense vegetation—the sort of situation a deminer may face in a live mine field. Thus, to initially teach the drills and skills required, a flat area may be good, but this training must be followed up when the deminers have perfected the basic drills with training in difficult situations before they are put in a live mine field.

The use of practice mines with small pyrotechnic (flashbang) simulation charges can bring realism to the training and demonstration drills and practices, driving home the point to the deminer that if he made such a mistake in an actual live mine field, he would be killed or seriously injured. Realism can be injected into training by mixing pieces of scrap metal in with the practice mines in the sort of density experienced in actual live mine fields.

Often, management can be improved by separating the operational side of the supervisory role from the administrative side, thus allowing the supervisor, his team and section managers to concentrate their time and efforts in the mine field. The administrative staff can concentrate its efforts into looking after the deminers’ physical needs, personal problems and logistical requirements. If the deminer believes that these issues and his interests are being looked after by his organization, he is less likely to be distracted by his task or to make a mistake. Management should be rewarded for a job well done, but it should also be punished when a lack of supervision leads to a deminer getting away with poor drills and practices, which, in turn, leads to his death or injury. Managers must take a personal interest in the health and mental welfare of each of the deminers under his control. Each section leader should know intimately what motivates and makes each of his deminers “tick.”
Differences in Military vs. Civilian Trained Deminers

The major difference between military and civilian trained deminers is that military trained deminers normally are instilled with a greater sense of personal self-discipline and are trained to undertake each action within the mine field as an instinctive drill. This practice may still be true, but each drill has been carefully thought-out to give the deminer the greatest chance of coming out of the mine field each day in one piece. Many aspects of military demining differ greatly from humanitarian demining. Despite all these differences, the actual drills of humanitarian and military demining are the same.

Due to the tedious and repetitive nature of demining, there is a great temptation, especially among deminers who lack a strong sense of self-discipline, to cut corners and compromise the safety and quality of clearance. Most accidents happen when deminers do not follow the drills exactly. The safest personal policy is to follow the drills and procedures exactly the way they are taught in military fashion. This method, of course, is not the easiest way. Many deminers prefer to do prodding drills in the squatting position rather than the prone position (the style taught in the military). Squatting is less tiring and more comfortable, but the injuries are likely to be far less serious if the deminer is in the prone position, rather than the squatting position, when the mine explodes than if he is in the squatting position, as much of the blast is channeled upwards when a mine explodes. Of course, this situation only applies to AP mines and not to the heavily charged AT mines. In two separate incidents in the same mine field within a period of two weeks, one deminer was killed and one slightly injured. Both accidentally initiated the same type of mine. The deminer who was killed was in the squatting position over the mine when it detonated. This deminer’s protective visor was shattered by the blast, and a piece of his bayonet was imbedded in his head. The slightly injured deminer was in the prone position, prodding at arms length, and his visor stayed intact. The deminer suffered some wounds to his hand and some broken bones, but he lost no fingers and was actually able to walk back to the nearby camp.

Only military style discipline can get deminers to work as a team, to follow drills and not to try to find an easier (and less safe) way of undertaking clearance. Civilian-trained deminers often lack the self-discipline required to undertake the task methodically, thoroughly and safely.

Risks and Lessons Learned in Developing an Indigenous Demining Team

Established in 1989, as an indigenous leading mine clearance organization in Afghanistan, ATC has witnessed many developments each year. Many lessons were learned about setting up an indigenous program in 1989, when the first stages of developing a mine program for Afghanistan were put into place. Military trainers from nations such as Great Britain, Australia, Canada, America, New Zealand, Norway and other countries set up training grounds near Peshawar, Pakistan, in 1989, and trained the first few hundred deminers in what became known as “Operation Salam.” The initial concept was to train Afghans to work as unpaid volunteers to demine areas around their villages. This concept had been used immediately after WWII by the Soviet Union and, at the time, was considered a continuing part of the “Great Patriotic War” fought against the Germans. It was believed that Afghan could similarly be persuaded that mine field clearance was a continuation of the jihad against the Russian invaders.

Hundreds of Afghan volunteers were trained and paid for their training, but the scheme failed when the “volunteer deminers” were sent back to their villages. The idea of doing a dangerous job like demining with no medical or organizational backup, little equipment, no salary and no insurance coverage soon lost its appeal. It was not until a proper demining organization, the ATC, was set up with U.N. funding by Eblagh, an ex-Afghan Army Officer, that demining in Afghanistan took off. Eblagh set up an organization based broadly on military lines and ensured his deminers were paid a good salary, had a pension plan, were properly trained, instructed, supervised and had medical support in case of accidents.

Since 1989, the Afghan program has grown and now employs 4,700 personnel, of whom only 10 are expatriate staff. The expatriate staff’s main role is to coordinate activities as a countrywide mine action plan and to address any technical issues and problems that may arise. In the past 11 years, over 200 sq. km of mine field and almost the same amount of battlefield have been cleared, and over 250,000 landmines and over 750,000 items of UXO have been destroyed almost entirely by Afghans. The United Nations set up a monitoring, evaluation and training NGO called META, staffed entirely by Afghans, to ensure that standards are kept high within the program. A small core international staff will still be needed to act as a link between the United Nations and the Afghan government to ensure that Afghan NGOs within the program are not pressured by their government to undertake clearance tasks which may be of a military or commercial and not humanitarian nature.

Afghanistan is a good example that an indigenous program can work. Initially, it was believed in 1989, that it would take up to 1,000 years to clear Afghanistan of all land mines. Yet, in 10 years, over half of the high priority areas have been demined, and it is likely that, given a continuation of present funding and resources, all the high priority areas will be cleared by 2007. If funding is maintained at a high level after 2007, it is likely that the remaining low priority areas could be cleared within 20 years, leaving a mine-free Afghanistan by 2027.

Current Developments Within the Afghan Program

In a new development for the year 2000, ATC has, as a donation, a UNO machine by the Japanese government to undertake mechanical demining trials. The UNO machine consists of a long reach mechanical excavator with the bucket replaced by a rotary cutting device. The rotary cutting device consists of a steel drum with hardened steel teeth designed to chew up the ground and any buried mines within the ground to a depth of 300mm. Further passes over the same piece of ground can increase the injurious area to 600mm, 900mm or 1.2m if required. Actual trials with this machine are expected to begin in Afghanistan in June 2000.

Other developments include an extensive testing program of new models of detectors from Minidah, Ehlinger, Schiebel, Forsrer, Mines and other companies in an attempt to find a replacement for the Schiebel AN 19/2 detectors currently in use. Extensive trials are also being undertaken on protective body armor and new visors separate from the heavy protective helmets currently worn. Also, replacements from the bayonets currently used by deminers to prod hard ground are being tested.

It is hoped that by the end of 2000, extensive trials will be undertaken on the Thibol demining flares to burn out mines and the Pesco series of small shaped charges used in the oil industry (containing from 6.5g to 22g RDX) to destroy UXO.

As the Afghanistan population and countryside have been severely afflicted by the never-ending presence of mines, the presence of ATC reinforces the seemingly endless need for deminers to constantly clear lands for civilian habitation. The need for improved PPE and machinery is evident, but with trained, motivated personnel, ATC is progressively moving toward its goal. With engineers actively pursuing innovative methods to increase the safety factor and clearance rate, ATC is on the cusp of a new horizon, combining military and humanitarian demining techniques to guarantee success in its mission to clear Afghanistan of its devastating mine crisis.

Contact Information
Kefayullah Eblagh
Afghan Technical Consultants
G.P.O., Box 1149
Saddar, Peshawar, Pakistan
Tel: 92 – 91 – 4041243589
Fax: 92 – 91 – 44780
E-mail: ares@pes.com.ar.net.pk

The Journal of Conventional Weapons Destruction, Vol. 4, Iss. 2 [2000], Art. 1

https://commons.lib.jmu.edu/cisr-journal/vol4/iss2/1
When assessing protection needs, my approach has been to determine what the risks are, what injuries result and then decide how to minimize these risks and protect against any residual danger. I also bear in mind that there is no point in prescribing an action or a garment that will not be used.

Though this method may be practical, it is not an approach endorsed by the protective equipment industry, which seems to prefer to base their assessment of risk on experimental data and a scale of injury used in the automobile industry. In the injuries they commonly predicted were accurate, all of the deminer victims I know would be dead. Most of them are at work.

Anyone considering this matter objectively should bear in mind that deminers do not want to wear any equipment that is uncomfortable, heavy, restrictive of movement or thought to be unnecessary. Demining program managers do not want to buy equipment that will not be used or is expensive to purchase and replace. They also are aware that demining incidents are extremely rare. I believe that seven incidents occur at the rate of one per 25-30 years of normal demining experience for each deminer. This statement ignores the fact that some groups have more incidents or work in more dangerous areas than others, but it does explain why most deminers have never seen an incident.

The following paper draws on information derived from five years of field research and from an intimate knowledge of the incident data in the Database of Demining Incident Victims (DDIV). The DDIV stems from my work during 1998 and 1999 for the U.S. Army CECDM NVESD Humanitarian Demining research initiative. It covers all recorded explosive incidents that have occurred while demining in Angola, Mozambique, Cambodia, Bosnia-Herzegovina, Laos and Zimbabwe. It also covers all the usefully recorded incidents that occurred in Afghanistan (1997-99) and those made available from Kosovo. It does not include details of civilian incidents and injuries. Often with considerable detail about the circumstances surrounding an incident, the records provide a reference for an informed analysis.

The DDIV has been accepted as an authoritative resource by GICHD in its work advising the revision of UN standards for IID. The DDIV is available on CD.

Eye injury is common and easy to avoid. Please see Andy Smith.

Threat activities

There are many opinions of what constitutes the greatest threat in demining. Using the DDIV as a data resource, it is possible to reduce the perceived threats to those that have a real manifestation. The "threats" are listed in terms of incident types and frequency.

<table>
<thead>
<tr>
<th>Type of incident</th>
<th>Number of victims</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavation</td>
<td>119</td>
</tr>
<tr>
<td>Missed-mine</td>
<td>83</td>
</tr>
<tr>
<td>Handling</td>
<td>32</td>
</tr>
<tr>
<td>Victim inattention</td>
<td>25</td>
</tr>
<tr>
<td>Detection/trigger</td>
<td>18</td>
</tr>
<tr>
<td>Survey</td>
<td>16</td>
</tr>
<tr>
<td>Vegetation removal</td>
<td>12</td>
</tr>
<tr>
<td>Other</td>
<td>10</td>
</tr>
<tr>
<td>Demolition</td>
<td>7</td>
</tr>
<tr>
<td>Detection</td>
<td>6</td>
</tr>
</tbody>
</table>

One can see that "excavation" is the most frequent incident to occur. The second most likely type is a "missed-mine"; it involves a deminer stepping on a device missed during clearance. The essential difference is that the first is deliberate (the detector reading must be exposed by excavation) while the second is accidental (no one intended to miss the mine). In the first case, the victim is doing what must be done; in the second, he is the victim of someone else's mistake.

Injuries Sustained

In the DDIV, injuries likely to be life-threatening to require surgery or result in permanent disability are rated as severe. All others are rated as minor.

For the whole database the following injuries are recorded:

Face/head/neck

- Severe eye 60; minor 37
- Severe face 19; minor 100
- Severe head 17; minor 56
- Severe neck 1; minor 23

Total: 101 severe injuries

Hand/arm

- Severe hand 34; minor 84
- Amputation of hand 8
- Amputation of finger 16
- Severe arm 25; minor 66
- Amputation of arm 13

Total: 106 severe injuries

Devices Involved

I am defining the threat as the mine(s)/devices most commonly occurring in recorded incidents in any one theater and omitting the AT mine threat. The DDIV includes records of two incidents involving an AT mine, both were fatal. Such cases being rare and seemingly impossible to protect against. I have left them out of this analysis.

The Blast Mine Threat

- **Afghanistan** – PMN (240g TNT) mine featured in 62 injuries.
- **Angola** – PPM-2 (110g TNT) mine featured in 12 injuries (PMN in six).
- **Bosnia-Herzegovina** – PMA-3 (55g Tetryl) mine featured in seven injuries; the PMA-2 (100g TNT) mine featured in five injuries.
- **Cambodia** – PNM-2 mine featured in at least 21; the "minimum metal" mines Type 72 (a or b) (51g TNT) featured in 15; and the M14 and MDR28 (27/28g) featured in eight (total of 21 minimum metal mines).
- **Iraq** – the PMN (240g TNT) mine featured in five injuries.
- **Laos** – none recorded.
- **Kosovo** – the PMA-two mines featured in four injuries.
- **Mozambique** – PMN (240g TNT) mine featured in 14 injuries.
- **Zimbabwe** – R2M2 (58g RDX/WAX) mine featured in 10 injuries.

The table reveals that there are more severe limb injuries than any other. What is not immediately obvious is that the most common type of incident, "excavation," rarely involves any lower limb injury. This fact is explained because lower limb injuries tend to be disproportionately severe.
In half of the countries, the PMN and/or PMN-2 represent the largest AP blast threats.

The Fragmentation Mine Threat

Afghanistan – PMZM (75g TNT) mine featured in 10 fragmentation injuries.

Angola – PMZM (75g TNT) mine featured in one fragmentation injury.

Bosnia-Herzegovina – PROM-1 (425g TNT) mine featured in 17 (all) fragmentation injuries.

Cambodia – POMZM (75g TNT) mine featured in one fragmentation injury.

Iraq – Valma-69 (450g Comp B) featured in three injuries (PROM-1 also featured in two of these).

Kosovo – no fragmentation injuries are recorded (still waiting for data).

Laos – a mortar featured in the only recorded injury.

Mozambique – OZM-4 (170g TNT) mine featured in seven or eight fragmentation injuries.

Zimbabwe – none recorded.

The PROM-1, OZM-4 and POMZM represent the greatest threat (in that order), as the PROM-1 does not feature in the data for Cambodia, Afghanistan, Laos, Kosovo, Zimbabwe, Angola or Mozambique. Of those countries, it is known to be common in Kosovo.

The Ordnance Threat

Afghanistan – a fuse featured in nine (of 12) ordnance related injuries.

Angola – no ordnance related injuries are recorded.

Bosnia-Herzegovina – a grenade featured in the only ordnance related injury recorded.

Cambodia – a fuse featured in four (of four) ordnance related injuries.

Iraq – no ordnance related injuries are recorded.

Kosovo – no ordnance injuries are recorded (still waiting for data).

Laos – phosphorous from an inadequately destroyed mortar featured in the only recorded injury.

Mozambique – a fuse featured in the only ordnance related injury.

Zimbabwe – no ordnance related injuries are recorded, but AP mine fuses featured in two recorded injuries.

Fuses are the most common cause of UXO injury with grenade being the next most common.

Reducing Risk

Most practical people accept that there are two ways to reduce the risk of severe injury in an incident. The first is to avoid the incident. The second is to provide effective protective equipment to limit any injury that occurs.

Avoiding risk can be achieved by revising the techniques used or by enforcing the application of operating procedures known to be safe. The DDI recorded 82 incidents where a primary cause was “management inadequacy”—usually the failure to provide appropriate equipment or training. A further 190 incidents had “field control inadequacy,” recorded as their primary cause. In these cases, deminers were not working as directed by management, and their errors were not corrected by management. Often they were obeying their field supervisors! These listings show that more than 82 percent of incidents may have been avoidable if the people working were given the correct instructions. Even for allowing reversal downwards, this point illustrates that attention paid to improved management at all levels could be an effective way to reduce severe injury.

When everything has been done to avoid an incident, provision must be made of protection operating any residual risk. The initial problem with this method is that it is impossible to protect against the worst mines. Bounding fragmentation mines are reported to spread fragments at velocities up to 1,200 m/s; a speed more than twice the size most body armor are capable of withstanding and four times the size the best visors are capable of withstanding. Deminers who trigger a mine at close quarters invariably die whether or not they were wearing protection. The answer is to try harder to avoid that risk. Strategies for this approach exist, such as cutting undergrowth with protected machines, avoiding “rendezvous safe” procedures using make-up splits (a risk revealed by the DDI) and generally keeping the deminer away from the threat.

The most common activity at the time of an incident is “excavation” of a detector reading. This activity must be carried out, and explosions have occurred when “mistake” was attributed to the victim. The “duty of care” of an employer requires that the deminer be protected appropriately when he is working as directed on a required task such as this one.

The second most common incident involves stepping on a “missed mine.” Missed-mine incidents indicate that detection has not been effective. These types of incidents should never occur. Some time-served groups have not had any missed-mine incidents; others have had many. This fact implies that it is possible to work in a way that avoids these. Incidentally, there is no evidence of a greater risk of missing a mine when demining in areas with minimum metal mines. In the vast majority of missed-mine incidents, the mine was a PMN, PMN-2 or PPM-2, all of which have a large metal content. Even in Cambodia where minimum metal mines are relatively common, as many deminers have stepped on PMN-2 mines as on all minimum metal mines combined (T72, M14 and M68B2). The evidence in the DDI suggests that the best defense against the missed-mine risk is to avoid them by using better working methods. The next most common incident classification is “demolition.” This type is rare and happens when an explosive injury occurs while charges are being prepared or laid for the demolition of a device(s) already located. These incidents have included fragmentation mines. No effective protection could have been made available for some of these incidents, and at least some were caused by the victim breaching protective procedures. It seems likely that improved training is the only practical way to reduce the number of these incidents and the severity of damage to the victims.

Of all the classifications mentioned above, the only incident that occurs even when a deminer adheres to his training and instructions is “excavation.” This type is also the most common incident. For these two reasons, I believe it should provide the benchmark for protection needs.

Protection While Excavating

To protect a deminer against incidents that occur when excavating, we must be aware of the position he is in and the areas of his body most at risk. Despite the claims of some ill-informed managers in the industry, the data in the DDI clearly illustrates that almost all deminers work in a kneeling or squatting position while excavating. This news is good for the deminer because he avoids the whiplash acceleration injuries that have been associated with deminers in a stationary position with their heads only a few centimeters from the blast origin. The exploding device is almost invariably directed in front of and below his body and head. Often, his hand is above or alongside the device.
Severe (disabling) Injuries Recorded While Excavating

Face & Neck = 54 severe injuries
Upper limb = 51 severe injuries
Lower limb = 7 severe injuries
Trunk/Body = 10 severe injuries

The difference in size between the injuries to the upper limbs and head (51-54) is statistically insignificant in a sample of this size. The drop to seven for lower limb injuries is significant, as it illustrates the way that a fragment cone rises from a seat of initiation and the core of it often misses the legs (minor leg injuries were more common - 30). The drop to 10 for trunk/body injury is also significant, illustrating clearly that the main torso is not at the same degree of risk as the upper limbs and the head. Several of the severe body injuries resulted from the tool, or part of it, hitting the body.

Face and Neck Protection

Despite the fact that some form of eye protection was issued, it was not worn in almost half of the recorded blast mine incidents. Eye injury accounted for 97 of the 236 blast mine victims in the database (more than one in three).

Eye protection issued varied from industrial safety spectacles to 5mm polycarbonate visors. Safety spectacles were issued to 25 percent of the victims in the DDIV. In 35 percent of the cases, 3mm visors were issued; and these visors sometimes shattered (there were 19 severe eye injuries in excavation incidents over two years in that theater alone).

Visors made of 5mm thick untreated polycarbonate sheet that cover the face have been used by most professional groups (MAG, HALO Trust, NPA Mozambique & Angola, MgM, Koch MineSafe, MineTech, INAROE, etc.) for some years, and their use is spreading. Some of the visors are short and attach to helmets, all too often leaving the wearer's throat exposed (especially from below when kneeling). Others are long and worn without helmets. When worn properly, these offer some protection to the throat when kneeling and looking down.

I have tested 5mm untreated polycarbonate visors in over 40 blast tests using AP mines. They have not failed catastrophically, but a 5mm visor did break in two in one recorded incident. In one test, the material was penetrated by a steel fragment placed in the earth covering the mine. In several further tests against POMZ fragmentation mines, the visor was not penetrated at all, illustrating the unpredictability of mines but also showing that 5mm polycarbonate does not guarantee protection to a deminer excavating an AP blast mine. A full-face visor made of polycarbonate is light enough for sustained wear (thousands of deminers use them) and is probably the best that can be provided until a lighter, stronger material is developed. This evidence suggests that 5mm polycarbonate full-face visors fixed in the "down" position should be the standard for facial protection while excavating AP blast mines.

Upper Limb Protection

It is unconventional to put hands and arms among the areas needing protection. However, the DDIV recorded 51 severe upper-limb injuries from blast mine detonations, including 14 amputations of fingers and hands and 10 of arms. These injuries are worse when the tool is short and used vertically. When the tool breaks into its component parts, deminers have been struck in the chest, upper arm and face with severe consequences. At least five deminers died after their hand-tool failed and fragmented in a blast.

There is also evidence in the DDIV that hand and arm safety can be enhanced by using hand-shields and sensible manufacturing constraints that keep a tool in one piece. For example, in at least eight prodding incidents with a simple tool made in Africa, the tool blade curved and the handle and blade stayed together. In none of these incidents was the deminer injured by his tool.

The evidence from the DDIV supports my belief that:

- To prevent hand injury when excavating, tools should be designed so that they are easiest to use at a low angle to the ground; and
- To reduce hand and arm injury, tools should be designed to stay in one piece, should be long enough to keep the deminer's hand at least 30cm from the blast and should incorporate a flexible blast shield whenever possible without reducing utility.

Examples of such tools exist and are available commercially.

Body Protection Against Fragmentation

Protection designed to reach a STANAG V50 of 650m/s (current U.N. standard) has proved less than adequate against bounding fragmentation mines. Fortunately, fragmentation mine incidents are rare outside Europe, and there are no records of a bounding fragmentation mine incident occurring while excavating.

Body Protection Against Blast

The DDIV recorded 14 deminers dead as a result of blast mine detonations. Five of these victims were wearing frag-jackets of some kind, but all five were not wearing head protection (or not wearing it properly). Additionally, four of these involved severe head-injury; the fifth deminer was squating and stepped on a mine so he suffered severe lower body injury. The frag-jacket did not appear to have "failed" in any of these cases. In excavation incidents where armor was worn, it did not fail; thus, the DDIV provides evidence that the STANAG 450m/s current standard of body protection is sufficient against the largest blast-mine threat (240g TNT) at a distance of 30cm.

However, a STANAG V50 of 450m/s is no measure of blast protection. A blast mine detonation is a significantly different kind of threat, and the materials used to protect against it may not have the same fragmentation resistance despite being more effective against a blast mine detonation. An example of this situation is the low cost, flexible ballistic Aramid; it retains its integrity in a blast better than Kevlar, but it has a much lower V50, weight for weight.

As the data in the DDIV shows, the armor currently issued is not always worn. Deminers tell me that because it is heavy and uncomfortable, they feel that the bulkiness of the gear may increase their chances of making a mistake. This assertion explains why there has been a general move away from flak-jackets toward frontal "aprons." Some of the aprons hang loose while others are strapped firmly to the body. Some aprons have a V50 as low as 380m/s; others exceed 450m/s. Only two failed in my tests; the higher V50, but it was made up of discrete panels that the blast separated. Conversely, the one-piece apron with a lower V50 performed well in seven tests and in at least 15 real incidents.

The evidence shows that when body protection is not a high priority, it may be desirable. It is even more desirable if it is comfortable enough for a deminer to wear. Simple blast resistant frontal aprons have proved adequate to protect an excavating deminer in real incidents and comfortable enough to be worn without protest. Thus, the evidence suggests that deminers should be issued frontal body and general blast protection aprons (240g TNT at 30cm) when excavating.

No Protection Because of No Real Risk

There are a number of products available that offer protection against questionable risks. Facts suggest that these risks are so rare that deminers feel that protection against them is unnecessary.

There is no evidence among the data for over-pressure internal injuries ("chorionic disruption") resulting from an AP mine. The evidence in the DDIV proves beyond reasonable doubt that this "threat" is more commercially convenient than real. Presently, there is no evidence to suggest that blast-proof boots have reduced injury. Current evidence suggests that wearing blast-boots when stepping on a blast mine containing significantly more than 50g HE may actually worsen the level of severe injury. Also, the only
Practical PPE That Could Reduce the Severity of Incidents:

- Eye protection with a STANAG V50 equal to that offered by untreated 3mm polycarbonate (about 280m/s). This equipment must be in good condition and not reduce clarity of vision by more than 10 percent;
- Hand-tools that are fit for a purpose and are designed to minimize the risk of adding to injury; and
- Comfortable frontal blast protection (against 240g-TNT or 30cm) for use when excavating. The inclusion of a collar that overlaps the visor and closes any access to the throat in a blast is desirable.

Some groups already do most of the above. A few of the organizations have done so for many years. This report provides evidence that my suggestions are practical, and the DDIV provides evidence that they are needed.

Contact Information

Andy Smith
Tel: +44 (0) 1926 493993
Fax: +44 (0) 1926 411932
E-mail: asv@landmines.denoon.co.uk

1 These activities are defined in detail in the DDIV.
2 Statistics are based on the April 2000 release of the DDIV.
3 Submunitions with Anti-Disturbance fuses, flag-jackets and shaped-charge are a separate risk that requires a different approach and specialized SOPs. They have not been factored in recorded incidents.

One Last Appeal

Please, let us not spend mine-clearance money on unnecessary expensive equipment. Let us not load down a deminer with equipment that he will discard as soon as our backs are turned. Please, let us not ignore the facts just because they disturb our quest for profit.

CONQUERING THE INSURMOUNTABLE

The Canadian Center for Mine Action Technologies Advances the Technological Realm of Demining

by Stephanie Schlueter and Virginia Saulnier, MAIC

The Canadian Center for Mine Action Technologies (CCMAT) is a partnership of resources from the Department of National Defence and Industry Canada. The Center is co-located with the Defense Research Establishment Suffield (DRES) at Canadian Force Base Suffield in Alberta.

CCMAT’s mission is to conduct research and development of low cost, sustainable technologies for mine detection, mine neutralization, personal protection and victim assistance. The center also seeks to find alternatives to anti-personnel landmines and serve as an information hub on humanitarian demining technologies. CCMAT is a test and evaluation site for new ideas brought forward by the Canadian Industry and its partners.

After the CCMAT was established in August 1998, Dr. Denis Bergeron quickly assumed an active role within the center. Previously, Dr. Bergeron’s background at DRES had directed his focus to the neutralization of landmines, however, his interest has since shifted to the protection of deminers against explosive landmines. During an interview with the Journal, Dr. Bergeron offered candid responses concerning CCMAT’s main objectives, their current products and their vision for the future.

Communication Venues

Dr. Bergeron spoke extensively of the flowing web of communication present in the demining community, especially between Canada and the United States with respect to SOLIC and Fort Belvoir, Virginia, and the European demining organizations. “It’s been excellent cooperation on that side [Fort Belvoir]. There’s also quite a bit of cooperation with the European community... There is a very frequent exchange of information, keeping each other aware of the progress.” Maintaining open communication is vital to the advancement of demining technologies, as “there isn’t enough money to try everything... and certainly you don’t want to squander any of the ideas that are coming out. However, you have to be selective as to pursuing which ones will actually make a difference in the field.”

Despite the traditional image of static think tanks and endless facts and figures, technology is a creative activity that only grows when one new innovation spurs on the thought process of another developer.
The Demining Technologies Information Forum

To reinforce the open exchange of ideas among the demining R&D world, one of CCfMAT’s newest initiatives is to start a Demining Technologies Information Forum (DTIF). With new developments in mine action technology as a major part of the CCfMAT mission, a way to share those innovations is paramount to the center’s success and effectiveness. There is a need among scientists, engineers and all R&D to advance demining technologies and to share information in an organized way. Some key players in DTIF will be the European Union, United States and Canada. The sharing of even the simplest idea to the most technologically complex will create an auger for advancements in mine action technologies that contributes to the world’s efforts to remove landmines.

DTIF will be a forum for R&D people involved in technical demining and will be open to all countries, especially those with a funded R&D demining program. For DTIF to carry on its work in the most productive format, CCfMAT has outlined several of its qualities. DTIF will keep the technology world updated on the state of funded research in national programs. Additionally, DTIF will develop meetings, workshops and a universally accessible web site, and employees will publish an electronic journal dedicated to R&D demining. DTIF will be implemented through the JMU/MAIC web site, through a demining technology journal, newsletters or other suitable publications, and it will conduct workshops on specific topics. The first conference was held in Ispra, Italy, in July 2000. Essentially, DTIF will succeed in supplying a medium conducive to the free sharing of technological theories, assisting the flow of uninhibited communication.

New Technologies

As one of CCfMAT’s prime objectives focuses on innovative demining techniques, applying military countermine technology to humanitarian demining seems only logical. Therefore, the collaboration with other organizations assist CCfMAT’s attainment of this goal in addition to maximizing the efficiency of a combination of resources. Dr. Bergeron supports this objective, as “technology remains technology… the physics are what drives the [landmine] problem and what will drive us toward a solution.” Although military countermine technology specifically applies to the speedy detection and neutralization of ordnance under combative conditions, the application of military intelligence to humanitarian demining demands attention. “[Deminers] bring the technologies that would not fit the time schedule for countermine and use them in humanitarian demining,” effectively demonstrating the potential benefits resulting from collaborative efforts.

The Frangible Surrogate Leg

Because most victims of landmines detonate the bombs when they step on them, the feet and legs are usually the first body parts to feel the terrible impact. In order to test safety equipment for deminers, CCfMAT must have a tool to simulate the deminers’ limbs and, therefore, give accurate readings on the effectiveness of a given tool. Hence, engineers and scientists invented the Frangible Surrogate Leg (FSL). The FSL is a particularly positive example of the demining community’s coordinated endeavors. This new technology, developed by Australian scientists at the Defense Science and Technology Organization and the University of Adelaide, allows the center to facilitate the design, development and evaluation of new protective clothing and equipment for deminers.

The FSL is a precise reproduction of the human leg made with materials that react to a blast as human tissue would. “It has advantages over donated limbs… from people who have had gangrene or something, [because] those limbs have disease so the results are biased. If the subject is a twenty-year-old, there is a certain strength in the bone [as compared to a sixty-year-old]; therefore, in trying to compare tests … you are not working from the same sheet.” Consequently, the FSL’s likeness to a human limb is what makes it so vital to deminers’ safety. The bones are made of mineralized plastic, and ballistic gelatin represents the muscles.

After the FSL receives the impact from a simulated AP mine, strain gauges placed on the bones measure the load imposed by the blast, and an X-ray sensitive dye allows surgeons to use the CT scan for diagnosis. The CT scan produces a three-dimensional image that allows non-medical personnel, such as the designers of protective equipment, to interpret blast injuries and create better protective equipment. By understanding the physics of a mine blast, it is permissible to lower leg injury, equipment designers can better serve deminers in the field. The FSL can help with the evaluation of prototypes and new designs at their earliest stages.

The Spider Boot

An example of one of the benefits resulting from the application of the FSL to demining safety concerns is the Spider Boot. The boot, which is intended to protect deminers’ feet if they should detonate a landmine, looks like a chic hiking boot on top of a tabletop-like platform complete with four “legs.” The developers of the Spider Boot, Med-Eng Systems Inc. in Ontario, worked with the help of a Defense Industrial Grant to develop this foot-protection tool. By testing the boot, CCfMAT fulfills its mandate to adapt military technologies for application to humanitarian demining.

The Spider Boot’s futuristic look does not make it as all a playful toy or inventor’s bluff. It is, rather, a potential life-saving piece of footwear. The idea behind the Spider Boot is that it keeps the foot at a safe standoff distance from the blast origin. The Spider Boot provides more protection than a conventional mine boot by deflecting away decaying blast waves and by absorbing the residual energy with the composite materials of the boot. Field trials at CCfMAT have shown that the energy-absorbing materials in conventional boots cannot withstand the overpressure of the detonation.

As with any new piece of equipment, skepticism is bound to surface, but, as Dr. Bergeron stated, “People in the field are skeptical, and they should be because they’re the ones whose lives are on the line. The equipment is there to protect [deminers], provided [they] use it in a certain manner.” In addition, Dr. Bergeron asserted that demining organizations must not blindly purchase equipment for their employees, but research the benefit from proper use of the equipment and the consequences resulting from improper use. “That’s part of the testing too, so you can provide people with an example,” Dr. Bergeron acknowledged, referring to the testing of the FSL.

CCfMAT’s Vision for the Future

In conclusion, CCfMAT’s vision for the future must coincide with their current direction to position themselves to further improve deminers’ personal protective equipment and clothing. Dr. Bergeron summarized, “I think what’s important within CCfMAT is that we are taking a step in the right direction, one that’s improving a lot on the safety of [deminers]. …And, like anybody who works in this domain, you want to see the work that you do be put to good use. That’s what we’re hoping for. I think we are very much in line with meeting that goal. You always want to leave a legacy behind (and know) that you’ve done a good piece of work that’s useful to people.”

Contact Information

Dr. Denis Bergeron, Military Engineering Section, Defence Research Establishment Suffield, Canadian Centre for Mine Action Technologies P.O. Box 4000 Station Main Medicine Hat, Alberta T1A 8K6 Tel: (403) 544-4756 Fax: (403) 544-5324 E-mail: Denis.Bergeron@dres.dnd.ca Website: www.ccmat.gc.ca

Published by JMU Scholarly Commons, 2000

Focus
In Cambodia, a deminer was working in the prone position and set off an anti-personnel type 72 Chinese tilt mine. The resulting blast went over his head and did not damage his exposed hands. The blast over-pressure sucked air and dirt into his helmet visor and punctured his eye, which recovered fully. This over-pressure problem was caused by an air gap between the helmet visor and his protective jacket. Within seven days a new visor was dispatched from the manufacturer to my specifications, tested and found to remove the air gap problem. As part of the daily safety checks carried out on deminers it is necessary to ensure that helmet and protective jackets are properly fastened.

Introduction

There are many reasons that can be given for wanting to work in the field of humanitarian demining. Some of these reasons can come from the experience of living and working in mine-affected communities for periods of time. The results of a landmine explosion and the danger caused to humans have a devastating effect. This is especially true where children, unknowing of the danger, carry out normally accepted routines. On many occasions I have witnessed the effect first-hand, mainly on civilian casualties. People, usually relatives, trying desperately to reach victims in mined areas, have to be physically restrained to prevent them from becoming victims themselves.

Manual Demining

Understanding the basic safe and proven method of manual demining, gives an instant advantage in dealing with situations like those mentioned above. Manual demining has many advantages over other more mechanical interventions, many of which remain unnoticed. For instance, where mechanical access is restricted, a manual deminer may not experience this as a difficulty. When problems arise, information can be readily obtained from personnel. United Kingdom Through questioning, reasons for action can be discussed and studied, and plans can then be made for remedial action.

Training

Selecting and training of locals in affected countries has become the norm. This is successful when the training is carried out by properly qualified and experienced instructors. They have experience with the problems expected to be encountered in the selected country. The teams of manual deminers will only require basic equipment to enable them to carry out the tasks given to clear land.

To speed up the process of manual clearance, without a reduction in safety, requires extensive training of deminers. This ensures that the drills that are taught and the skills transferred provide confident, qualified personnel in the demining teams. These teams need to be continually monitored to ensure that the quality standards taught and practiced are maintained. With increased practice a natural process evolves within the teams, who, with gained confidence, increase their capacity to clear land.

In some countries scrub results in a manual clearance problem. To produce the best detection capacity, it becomes necessary to remove scrub so that the metal detectors can be in close proximity to the ground. Scrub removal takes up to 80 percent of the time utilized to clear land and has to be removed before manual demining can take place. Mechanical scrub cutters that are available could help to reduce the time factor; and therefore, help to clear land quicker.

Training the Trainers

Selection and training of locals into mine-clearance teams in affected countries requires the supply of qualified and experienced instructors. These experienced instructors will be required to have an understanding of the local culture and a technical knowledge of the mines and associated unexploded ordnance that may be found in that country. It must be understood that a good base for training of ex-past has been the military engineering schools. Commissioned officers seldom gain this type of training, as they often become involved in the management of military programs, leaving their soldiers to deal with the clearance.

Military vs. Civilian Clearance Requirements

There is a big difference between military and civilian demining requirements, although the basic skills remain the same. The military requirement is to clear sufficient ground to permit movement of battle groups etc., and is known as breaching minefields. Casualties of an average of 15 percent from such military action are accepted. Protective equipment is normally worn by the military while carrying out such tasks.

Civilian requirements are quite different from those of the military. Cleared ground needs to be safe and accessible for production. To achieve "safe ground," it is necessary to search 100 percent of the mined area. Quality assurance needs to be applied to ensure that the clearance has been carried out effectively.

Protective equipment in the form of body armor and protective headgear should be issued to each deminer. In some countries, the lack of experience of some of the instructors results in them permitting deminers to carry down to good mines. This practice should be terminated. The correct position is prone and with the arms extended. Although not always comfortable, masks can be provided for comfort. Laying mats on the ground can also protect the deminers from sharp stubble.

Interpreters, Selection and Training

Selection of interpreters for ex-pat staff employed as instructors requires interpreters to have a good working knowledge of the instructors language. Time needs to be spent with interpreters to ensure that any instruction that may be given is fully understood. This needs to be carried out prior to training and selection of the locals. Experience gained in many countries provides a skill base. Combined with the correct selection process, male and female deminers will develop their skills at the hands of qualified and experienced instructors. Time needs to be set aside for testing and practice during training. When necessary, extra training during operations must be given when techniques have to be adapted to fit the requirements of safety. Standard operating procedures and safety orders need to be fully translated, taught and tested.

Increasing the Skill Base

Opportunities should be provided to increase the qualified deminer's capacity and skills base. During operational deployment, each and every team member should be given the opportunity, under supervised conditions, to lead the selected team. Each team member is assessed on his abilities by a qualified specialist and awarded merit points. A management committee carries out a selection process to determine which personnel should be given further training.

Courses of training may include:

- Supervisors Course
- Team Managers Course
- Leadership Course
- Medics Upgrade Course

The aim of these courses is to provide, given time and practice, an indigenous capacity in the selected country.

Manual demining can be routine, methodical and requires extreme concentration. From experience and comparison, female deminers have produced more daily output than their male counterparts and are suited to the conditions required. All deminers and training programs can benefit from an organized methodology for training and deployment in the field, which should be combined with protective gear that is adapted to the deminers needs.

Norman Stewart, Director/FOID Consultant for Mine's Clearance International, has been working in the field of operational mine action for more than 28 years.

Contact Information

Norman Stewart
Mine's Clearance International
P.O. Box 4100
WORTHING
West Sussex BN11 2HG
Tel: +44 1903 202211
Fax: +44 190-3 530648
E-mail: m.stewart.mci@ic24.net

by Norman Stewart, Director Minel's Clearance International
Countering the Global Landmine Epidemic...Through Basic Science Research

by Mark S. Rosenzweig and LTC Robert M. Harris, AFDS Extremity Trauma Study Branch

Since their first use during the U.S. Civil War (Croll 1998), blast landmines have played a role in almost every armed conflict from the World Wars to the most recent limited skirmishes. Landmines are the epitome of the consummate soldier: always ready, never stringy. Mines are simple devices that can function with little effort and from readily available materials. In Sri Lanka, numerous news releases covering the conflict mention a “Johnny mine” (Bonfield 1997), which is a local term for an improvised explosive device. Manufactured mines can be inexpensive, costing as little as two dollars apiece. If mine laying operations ceased tomorrow, an estimated 100 million mines would remain in place throughout the world (United Nations 1994).

Burden

Landmine injuries have reached epidemic proportions in the Third World, affecting both combatants and civilians. From 1980-1993, the incidence of landmine-related injuries doubled, resulting in an estimated 2,000 deaths or injuries per month (Rutherford 1997). Designed to maim rather than kill, landmine injuries can quickly overwhelm local medical services, creating shortages of medical supplies and lengthening the wait for treatment. Landmine survivors often require more surgical procedures than other war injuries, longer recovery times and their injuries rapidly deplete the limited blood supplies. Even with international assistance, many countries’ emergency services are quickly overwhelmed, further escalating the morbidity and mortality rates for these and other injuries (Stewart 1999).

Landmines have a lasting effect on the indigenous population of affected countries in many aspects of daily life. By limiting access to agricultural areas, landmines may contribute to famine, forcing inhabitants to farm in mined areas, thus increasing the number of victims. For landmine amputees, the limited supply of adequate prosthetic devices can determine their level of dependence on others for support, further burdening the economy.

Personal Protective Equipment

While Personal Protective Equipment (PPE) will not be available to everyone in a mine-threat area due to the cost and sheer numbers involved, individuals responsible for landmine clearance operations require protection in case of accidental detonation. During the early 1980s, soldiers attempted to fabricate protective AP mine footgear using common materials, such as lumber and rope (Croll 1998). Later, in the early 1990s, the U.S. Marine Corps developed a six-inch web attachment for combat boots while the Army evaluated protective shanks in the 1980s (Fujinaka, E. S. & MacDonald, J. L. 1986).

Commercially produced mine-protective footgear is currently in use, and its effectiveness is being highly touted by the manufacturers. However, recent testing has shown these boots are inadequate in the prevention of severe injury, and further research is necessary to facilitate future development of effective mine-protective footgear.

Testing

Until recently, the evaluation of anti-mine footwear tests involved little more than material properties testing utilizing surrogate metal limbs or wooden forms. Evaluation of protective capability was determined by the boots’ ability to remain intact. These test fixtures had little or no correlation to human physiology or the injury producing mechanisms. Past evaluations were unable to correlate test results with actual human injury.

In the 1990s, work conducted at the U.S. Army Natick Research, Development and Engineering Center led to the development of new anti-mine footwear. Testing of this footwear began with laboratory material properties testing and ergonomic field trials during simulated clearance operations and then progressed into field trials utilizing surrogate metal limbs (Tijerino & Hay 1999).

Evaluation

While these tests produced valuable information, the actual mechanism of injury was not fully understood. To better define the injury process, the U.S. Army Institute of Surgical Research, Extremity Trauma Study Branch (USASIR-ETSBR), conducted field trials in collaboration with the Aberdeen Test Center (ATC) and the University of Virginia’s Automotive Safety Laboratory (UVA) (Harris, et al. 1999). Based on years of research conducted by the automotive testing industry and the capabilities of ATC, cadaver testing was conducted to better understand the pathophysiology of a blast landmine injury and if protection is feasible.

The purposes of the study were the biomechanical evaluation of blast landmine injuries and to compare the medical outcomes to the various levels of protection provided by several types of commercially available footwear. Recognizing the inapplicability of injury scoring systems such as the International Committee of the Red Cross’ (ICRC) wound scoring system (Coupal 1992) and other civilian studies (NISSA, MESS, MESS) (Bonanno & Luce 1993) (McNamara, Heckman, & Corley 1994) in assessing blast injury severity of the lower limb, the Mine Trauma Score (MTS) was developed (Harris, et al. 2000). The MTS was devised to compare the severity of landmine events under different test conditions without relying on any physiological parameters in order to apply it to the cadaver model. The vast majority of landmine injuries in the field require either transfemoral or transinguinal amputations (Coupal 1991); however, the scope of the MTS includes values appropriate to lesser degrees of injury. This range of values allows for the evaluation of any protective effect provided by the footwear (Table 1). In addition, the MTS may allow for future retrospective studies of actual deminer injury records for validation purposes.

The MTS uses the following definitions of the injury criteria: I) Closed Injury: injury of the lower extremity that does not violate (lacerate, tear) the skin. The potential infective sequelae of injury are minimal even with underlying fractures compromising functional outcome. II) Open contained injury: any...
lower extremity in which the skin is breached (lacerated, torn), but little evidence of contamination is present. An example would be a laceration to the skin of a foot contained within an intact boot. By avoiding the gross contamination usually associated with mine injury, this group may sustain fewer secondary infective complications. III) Open contaminated injury; any blast mine injury to the lower extremity in which the skin is not only violated but the exposed soft tissue is visibly contaminated. This contamination may be from the soil, footwear debris or landmine fragments. IV) Salvageable limb: an injury in which the severity does not render primary amputation inevitable. V) Trans blast/transmoral; when the area of injury extends into the proximal third of the tibia and the severity makes it difficult to determine the level of amputation required at the initial treatment. Even when the extent of soft tissue damage does not extend above the knee, there may be insufficient tibial length or adequate soft tissue to fit a workable prosthesis. In this circumstance, every attempt is made to keep the level of amputation transfibular for functional reasons; however, revision to a higher level may be required at a later stage. An MTS value of definition replaces this category of uncertainty of the final level of amputation.

Boot Strategies

Mine protective footwear strategies currently fall into three broad categories. The first is blast deflection that directs the blast away from the contacting limb (Welco Blast boot alone). The second is stand-off, which uses elevation (BFR), or off-axis detonation (MedEng), to distance the involved limbs from the mine blast. The third method involves blast attenuation that utilizes materials that decrease transmitted energy through a change in their physical state or attenuate the blast by destruction of the boot (Welco Over boot). For the cadaver testing, four commercially available mine-protective boots were evaluated. A standard issue U.S. Army combat boot (Rosace) was utilized as a control against which the boots were compared. Two single boot designs were evaluated: the BFR (Singapore) and the Welco Blast boot (U.S.). In addition, two types of over-shoes were evaluated: the Welco Over boot and the MedEng Spider boot (Canada) in multiple combinations with the single boots as inner boots.

Level of Protection

In reviewing the strategies incorporated with current protective footwear, no boot truly utilizes one independent method. The Welco Blast boot and Over boot utilize both deflection and attenuation through an aluminum honeycomb; however, some direct contact standoff is achieved through the increased sole thickness or the combination of two boots. Use of the Over boot also contributes additional standoff and deflects some of the energy as the boot decouples from the inner boot. The MedEng Spider boot uses open-air standoff and off-axis detonation. The BFR boot couples an Aramid upper with insole to a thicker standard sole and was the only boot tested that employed simple standoff.

Medical Outcomes

There is an ongoing misconception among some soldiers and military personnel that little or no foot protection is better. The belief seems to be that, without footgear, sacrificing the foot saves the leg. If this were the case, there would be strong argument for this technique. Field trials show that the unprotected, or minimally protected limb, incurs a possible transmoral amputation even with the smallest landmine. Medical studies have shown that as the level of amputation progresses above the knee, the increased energy expenditure for walking changes from 15 percent to 40 percent with a prosthesis (Waters et al. 1976). Surgical amputation of the limb does not always constitute a failure of the protection or the medical care. Any protection that can reduce the number of transmoral amputations is an improvement for the mine trauma victim.

Current footwear does not prevent severe injury but can provide a reduction in injury severity, especially with smaller change weights. With the more effective boot combinations, injuries can be reduced from open contaminated wounds, which would require a possible transmoral amputation, to a closed injury, allowing for a transfibular amputation or possible surgical reconstruction. Reduction in the potential infection rate and decrease in the number of transmoral amputations constitutes a significant medical outcome improvement.

The study suggested that boots consisting of sturdier construction or materials, such as the Blast boot and BFR boot, seem to reduce soft tissue insult when used in conjunction with an Over boot. The potential benefit obtained from a closed injury is related to the reduction in contamination and likely infection.

Analysis of the cineradiography images demonstrated the inherent problem with a deflection strategy by showing that bony tissue damage occurs in the first few milliseconds from the initial shock wave, well before any gross movement of the limb from the blast wind. However, the amputation level for these injuries is clinically determined by soft tissue disruption. This practice would suggest that deflection of the blast wind might have a major role in preventing the soft-tissue injury. Prevention of soft tissue damage with protective equipment could shift the clinical significance and medical outcomes from the soft tissue to the bone.

The MedEng boot was the only boot tested that integrated off-axis detonation into its design. While the boot resulted in better injury outcome predictions, a limited number of samples and the inherent potential difference in injury mechanism require further investigation.

Conclusion

Review of the blast injury literature demonstrates the lack of scientific understanding of blast physics in relation to wounding. New designs and engineering developments in protective footwear technology have succeeded in reducing injury severity. The potential ability to convert direct contact blast events into non-penetrating blast trauma is the most promising direction for protective boot strategies. Once converted to non-penetrating blast trauma, correlation to the automotive industry databases may be possible and allow for incorporation and evaluation of new protective measures. While current, commercially available landmine protective footwear does not prevent severe injury, severity reduction associated with certain types of footwear merits further investigation and refinement before adoption in the limited mine-clearance arsenal.

Focused Topic:

- **Foot Designs**
- **Combat boot**
- **Blast boot**
- **Over boot**
- **Over boot installed on combat boot**

Figure:

Field trials show that the unprotected limb may incur transmoral amputation.

![Field trials show that the unprotected limb may incur transmoral amputation.](Image)
The Human Touch

by Russell Gasser and Terry Thomas
Development Technology Unit, University of Warwick

Military driven technology is useless for clearing mines in villages and rice fields.

Biting insects, inaccessible terrain, impermeable bamboo thickets and torn bushes. Mine clearance in Cambodia is a hot, sweaty business at the best of times. Because tripwires hidden in the undergrowth could trigger explosions, the vegetation has to be cleared by hand before mine detection can start. It is a tedious matter and can occupy two shifts of a mine cleaner’s working day.

The next step, finding and digging out every piece of buried metal, is not any easier. In the dry season, the ground is rock-hard and the deminers must move forward at a painstaking pace, prodding with a prorler and digging with a small trowel. Only one in a thousand of the finds is likely to be explosive, but you cannot let your concentration slip for a moment. The majority of deminers who undertake this painstaking work are not experts but local people who have gone through a training course lasting two or three weeks.

Cambodia is not alone. Current estimates suggest there could be 25 million landmines buried worldwide. That is far fewer than was previously feared but still enough to contaminate one country in three and to kill or injure two thousand people every month, many of them children. Present methods of clearing land are slow, and mines can remain active for many years. Something should be done, but what?

At first glance, the answer seems obvious: bring in super-fast robots, hook them up to remote sensors and control them from afar with computers. In countries such as Britain and the United States, that is pretty much what most scientists and engineers working on mine clearance technology have been doing. In a typical advanced research lab, you will see mine-like targets placed in giant sandboxes below computer-controlled positioning equipment. The researchers will be hunching over computers analyzing mine “signatures,” detected remotely by ground-penetrating radar and polarimetric infrared cameras. By combining information from these sensors, the lab can obtain stunning images of buried objects.

It is all very impressive. Yet despite the large sums that have been spent on such projects, the results to date have been of no use to humanitarian deminers working in heavily mined countries, such as Cambodia, Mozambique, Angola and Afghanistan. What has gone wrong is that researchers have made detecting buried mines their goal. But priorities in real mine fields are quite different. Vegetation and tripwire clearance and discriminating between mines and scrap metal are the key problems. To pursue expensive technologies designed for finding mines in level lawns is to woefully misunderstand what deminers actually do.

Part of the problem is that almost all the lab research is driven by military needs. Generals may want to clear a safe passage through a mine field quickly at night or under enemy fire. In humanitarian demining, what matters most is not speed but the ability to completely clear the land so that it can be returned to the community. This means that potentially useful methods are often developed to meet the wrong objectives.

For example, the ability to detect explosives without laboriously having to excavate scrap metal could be a boon. One promising method uses neutron bombardment to detect the nitrogen in explosives. When nitrogen captures neutrons, gamma rays of a known energy are produced and can be detected. Another technique is “nuclear quadrupole resonance (NQR),” a form of nuclear magnetic resonance (NMR) that can detect chemical bonds specific to an explosive by the way atomic nuclei absorb radio waves. Unlike NMR, NQR uses the Earth’s magnetic field instead of powerful magnets.

The problem is that research into such approaches has been aimed at making them as fast as possible for military use, almost regardless of cost. Humanitarian deminers require cheap and highly dependable tools, even if they are slow. And the nature that techniques such as NQR will be vital to clearing “plastic” mines has been overstated. Most so-called “plastic” mines actually contain a metal firing pin that sensitive metal detectors can now find. Only in a few well-defined zones, usually high-tech war zones, where a tiny number of special zero-metal mines evade detectors and have to be found by other methods such as probing.

In any case, the extended timescale of research programs, which may not produce results for a decade, represents a major problem for the mine clearing team. Afghanistan plans to clear all its potentially most productive and useful contaminated land by 2007. Some 4,000 deminers have already removed 850,000 mines, and mine clearance is now Afghanistan’s biggest source of employment.

A common argument for replacing these human deminers with machines and software is that it will be less risky and more efficient. In fact, it is likely to be neither. New software is notoriously unreliable, and advanced electronics is out of place in many mined areas. Deminers in rural Angola have enough problems getting batteries for their metal detectors. Besides, a skilled deminer looks and feels for suspicious objects simultaneously. They also listen for the sound of tools touching metal or plastic and make rapid decisions based on sparse information in unique situations. No machine, with or without batteries, can duplicate these skills. The fact is that human deminers are clearing land more safely than ever before. Accident rates are around one per 30 persons per year, and this statistic is declining.

While generously funded lab research has failed, simple pragmatic ideas developed in the field have yielded major improvements in humanitarian demining in recent years. For example, both commercial and NGOs have fitted mine-clearance tractors with agricultural flails to clear vegetation. Either the driver is protected by thick sheet steel or off-the-shelf remote controls enable driving from a safe distance. Similarly, home-made armored excavators are being used to sift through mined building rubble. Using the simple protective equipment now being manufactured in countries such as Cambodia, Pakistan and Zimbabwe, a deminer can sometimes walk away from an anti-personnel mine explosion with only scratches.

All of these approaches are based on an intimate understanding of local needs and human resources that have so far eluded hi-tech research. We have seen a similar pattern emerge many times in the developing world in the past 20 years from agriculture and water supply to urban transport and rural telecommunications. Everyone wants mine clearance to be safer, faster and cheaper. Scientists could help by making their work more relevant, but deminers despair that this will never happen. Someone, somewhere must try to prove them wrong.

*Reprinted from New Scientist

Contact Information
Russell Gasser and Terry Thomas
Development Technology Unit
School of Engineering
University of Warwick
Coventry CV4 7AL, England
Tel: +44 1203 522305
Fax: +44 1203 418922
Mobile: +44 7931 736352
E-mail: rsg@eng.warwick.ac.uk
Introduction

International Standards for Mine Action are being revised by the United Nations. As part of the revision process, a working group on personal protective equipment (WGPE) has been established to examine the subject of safety in mine clearance operations, and to make recommendations on standards and guidelines for PPE. This paper is based on the WGPE's report.

The concepts of safety, risk and risk management are not new to humanitarian mine clearance. Risk management involves the identification, analysis, assessment and removal (or at least reduction) of risk. The term implies dominance and control of the risk, and the application of agreed processes to achieve consistent results.

It is necessary to clarify the meaning of the term safety in respect to mine clearance. To say that a situation is safe implies a final judgment that the risk is in some sense acceptable or tolerable, or even nonexistent. However, the terms "acceptable" and "tolerable" imply human judgement of the situation and judgement may be tentative, transient and fallible.

A Systems Approach to the Problem

A recent international study of mine accidents and incidents carried out by Andy Smith on behalf of the U.S. Department of Defense (DoD) has revealed that in the vast majority of cases, victims either failed to wear PPE correctly or were engaged in activities which contravened local Standing Operating Procedures (SOPs). A simple statement of the blast and ballistic protection levels alone would be inadequate for international safety standards. A systems approach considering the threat, training, operating procedures, supervision, equipment capabilities, environmental factors and protection levels is needed to enable managers of mine clearance operations to decide appropriate local requirements for PPE.

Mine and UXO Threat

Though the term "threat" is not often found in general safety literature, it is frequently used in mine clearance to describe the extent of risk at a particular time in a particular country, province or district. Threat is a useful concept and we must establish a common understanding of its meaning and application.

Whereas "risk" refers to the probability and severity of a single occurrence of harm, the threat from mines and UXO refers to the sum of local risks in an area or theatre. In mine clearance, the probability of harm is a combination of the quantity of munitions with the potential to cause harm and the probability of failing to detect a single active mine/UXO. There seem to be three components of any threat within a given area: (1) The type of hazard (fragmentation, blast or incendiary), and the severity of physical harm which would result from its unintended detonation; (2) The detectability of mines and/or UXO; and (3) The quantity of mines and/or UXO within a given area.

Threat is dependent on time as well as area. In some mine-affected theatres it will reduce over time from demining and through effective mine awareness training. In other theatres it may increase over time from uncontrolled vegetation coverage, soil movements and the cumulative effects of weather.

The threat can be demonstrated graphically as shown in Table 1 below. This example, which uses data from Bosnia-Herzegovina, attempts to illustrate the antipersonnel (AP) mine threat in Sector MND(SW). In general, mines towards the top right of the table represent a greater threat than those towards the bottom left. The size of the circle is proportional to the quantity of mines.

Risk Management

In recent years, the concepts of risk, risk management and safety have received much attention from industry and academia. This attention can be explained in part by a moral imperative and by a growing sense of duty, but it is mainly driven by the impact of litigation. The International Organisation for Standardisation (ISO) has had to address these issues in the workplace. ISO guidelines for the development of safety standards are relevant, and the ISO approach has proved to be an appropriate model to guide the work of the WGPE.

Notwithstanding the legal imperatives to reduce risk, humanitarian mine clearance imposes a moral duty of care that demands attention be given to the consequence of all actions, and also to the consequence of inaction. The latter is often overlooked, and is particularly relevant to those in positions of authority, supervision, or professional standing in humanitarian mine clearance.

Health and Safety

The International Labour Organisation (ILO) is a specialist agency of the United Nations, which seeks the promotion of human and labor rights. The ILO formulates international standards in the form of Conventions and Recommendations by setting minimum norms, including basic standards regulating conditions of work and the workplace. In 1981, the ILO adopted a Convention (C155) and related Recommendation (R164) on Occupational Safety and Health.

Precedent and norms already exist at international level to provide guidance for the development of new international standards for safety in mine clearance. The concept of responsibility included in ISO and ILO documents implies the need for accountability. In particular, the responsibilities and obligations of the national authorities, mine action centres, the employers and employees, as required by the ILO, should be applied to the management of mine clearance and be included in the revised safety standards.

Mine Incidents and Accidents

Risk reduction involves a combination of safe operating procedures, education, training, effective supervision and PPE. In adopting a systems approach, the WGPE considered it necessary to analyze and evaluate the relationships between these factors before deciding whether the residual risk to deminers is "tolerable." This conforms to the approach taken by ISO in developing safety standards.

Much of the WGPE's analysis and many of its conclusions on PPE have been derived from the Database of Demining Incident Victims (DDIV) compiled by Smith. The database covers mine clearance incidents in Angola, Afghanistan, Cambodia, Bosnia-Herzegovina, Mozambique and Zimbabw.

The DDIV is a record of explosive incidents involving deminers. The victims were employed by NGOs, commercial demining companies, national agencies and, in some cases, the military. The current release (Version 1) of the database contains the records of 319 victims and 249 incidents.

Mine and UXO Hazards

AP blast mines are the most abundant mines encountered in humanitarian mine clearance and cause the greatest number of injuries. At close quarters, AP fragmentation mines overmatch the PPE currently available. Due to the area effect of such mines, they also have the potential to affect secondary victims. At mines normally require significant pressure...
to detonate and are less hazardous to manual deminers unless employed in a non-conventional manner. Effective PPE against AT mines is not available.

In general, when UXO munitions are encountered in the mine clearance operations, they have already been malfunctioned, though some are specifically designed as area denial weapons. They are usually high in metal content, on or near the surface. Since most are easily detectable, they constitute less of a hazard than mines. When the threat from "advanced UXO" exists, specialist EOD teams should be used. The varied nature of UXO means that the hazard is best dealt with pro-cedurally, rather than relying on PPE designed primarily for humanitarian mine clearance.

The effect of blast is roughly proportional to the explosive content, though it can vary according to the mine's construction. The PMN (240g) is an appropriate level to protect against, as it is one of the most common mines found in reported incidents. Most mines with larger charges (PMN-1, V69) are fragmentation mines, and the lethality of their fragmentation effects is more significant than blast. Fragment size and velocities vary greatly, even from mines of the same type with guessed/known causes.

DDIV analysis shows a high percentage of fatalities from fragmentation mines (52 percent of bounding fragmentation mine incidents and 22 percent of fragmentation mine incidents); survivors were usually secondary victims. Current PPE levels do not protect against close proximity fragmentation mines but may protect secondary victims.

There is also a fragmentation hazard from the casing and inner components of some AP blast mines. Furthermore, AP blast mines buried in soil, gravel and cracks and in soil containing a high percentage of stones represent a particular challenge for PPE.

Harmful Activities

The most common mine clearance activities which lead to harm were excavating (36 percent) and mineHunter incidents (26 percent). Excavation includes digging with any tool or investigating a previously located mine; a mineHunter incident occurs when a victim initiates a device which the deminer or any other member of the demining unit has failed to locate. While excavating, almost all deminers were injured in the squatting or kneeling position. In addition, there may be local environmental problems which demand use of specialized PPE or life support equipment.

Areas of the Body at Risk

The DDIV classifies non-fatal injuries as severe if they were likely to be life threatening, to require surgery or to result in permanent disability. All other injuries are classified as minor. The distinction is not intended to reflect the suffering and/or hardship associated with any injury. The areas of the body at risk are summarized in Table 2 below.

Risk of severe injuries to the head and to the limbs

(both upper and lower) is similar, but the risk to the trunk is not as severe. The majority of head and upper limb injuries were caused while excavating and from (mis)handling incidents, whereas the majority of lower limb injuries were caused by mine-induced incidents.

Environment

The diversity of environmental factors make it difficult to generalize about their impact on safety as a whole and on PPE in particular. Climatic extremes are a constant concern in some threats through high temperatures and humidity, cold. In addition, there may be local environmental problems which demand use of specialized PPE or life support equipment.

Analysis and Discussion

Perceptions

It has been assumed that minimum metal mines represent the greatest risk to deminers, as they are, at least in theory, the most difficult to detect. However, this assumption is not confirmed by the number of reported injuries. The majority of mine-induced injuries involve a PMN, PMN 2 or PP-2 and all have significant metal-content. There may be a psychological "risk adjustment," which causes deminers to operate with greater caution in areas where minimal metal mines are expected.

Fatalities

Less than 30 percent of incidents involved deminers (mis)handling or handling the mine during examination or dismantling. Nearly seven percent of incidents involved behavior considered dangerous or careless, such as stepping outside a cleared and well-marked area. Only two percent of all incidents involved an accident during detection. It should be noted, however, that this low figure may disguise the practice of "destruction by excavation," which is sometimes applied.

PPE Requirements

Human Factors: The frequency with which deminers fail to wear PPE suggests that equipment and clothing is either inappropriate or is already at or beyond the "wearable" limits of weight and mobility, though some improvements could be achieved through better field discipline. Any assessment of PPE requirements must recognize the limits of acceptability by addressing the human factors, including environmental conditions and ergonomics.

Associated Equipment: The systems approach to risk reduction includes an understanding of the interface between the deminer and his/her associated equipment. In this respect, the selection and use of hand-protection and appropriate hand-tools is particularly important and should be considered as an integral part of the PPE requirement.

Blunt

The explosive content of a PMN is "...just under the threshold for explosive injuries". Larger explosive content is generally confined to fragmentation mines where the lethality of fragmentation is more significant than blast. The DDIV provides no evidence to suggest the need to protect against overpressure from AP blast mines, yet they are conducted by Canadian Defence Research Establishment Suffield (DRES) suggest the possibility in certain cases of "...severe, critical or unsurvivable injury." The Fragmentation of Current accepted levels of PPE provide inadequate protection against fragmentation injuries. Larger mines at close quarters, and procedures/processes must be applied (with conviction) to reduce the risk to a tolerable level. PPE should continue to be designed to protect "secondary victims" against fragmentation injuries.

Boots

Successful boots which are designed with at least a 30mm stand-off may reduce injuries when stepping on small blast mines, but they impair mobility and are unlikely to be accepted for general use. In addition, there may be some specialist application. There is no clear evidence to suggest that blast-resistant boots, without any stand-off, would reduce injury to an acceptable level. Indeed, some evidence suggests that such boots may actually worsen the severity of leg and groin injuries when stepping on a PMN. Further evidence from study and independent investigations are required. Consideration should be given to the development of an international standard for reporting and for the conduct of investigations and inquiries. Though local requirements may vary, there is a need to maintain objectivity and impartiality and to facilitate lessons learned about risk and safety issues.

Areas of the Body at Risk

The DDIV classifies non-fatal injuries as severe if they were likely to be life threatening, to require surgery or to result in permanent disability. All other injuries are classified as minor. The distinction is not intended to reflect the suffering and/or hardship associated with any injury. The areas of the body at risk are summarized in Table 2 below.

Risk of severe injuries to the head and to the limbs

(both upper and lower) is similar, but the risk to the trunk is not as severe. The majority of head and upper limb injuries were caused while excavating and from (mis)handling incidents, whereas the majority of lower limb injuries were caused by mine-induced incidents.

Environment

The diversity of environmental factors make it difficult to generalize about their impact on safety as a whole and on PPE in particular. Climatic extremes are a constant concern in some threats through high temperatures and humidity, cold. In addition, there may be local environmental problems which demand use of specialized PPE or life support equipment.

Analysis and Discussion

Perceptions

It has been assumed that minimum metal mines represent the greatest risk to deminers, as they are, at least in theory, the most difficult to detect. However, this assumption is not confirmed by the number of reported injuries. The majority of mine-induced injuries involve a PMN, PMN 2 or PP-2 and all have significant metal-content. There may be a psychological "risk adjustment," which causes deminers to operate with greater caution in areas where minimal metal mines are expected.

Fatalities

Less than 30 percent of incidents involved deminers (mis)handling or handling the mine during examination or dismantling. Nearly seven percent of incidents involved behavior considered dangerous or careless, such as stepping outside a cleared and well-marked area. Only two percent of all incidents involved an accident during detection. It should be noted, however, that this low figure may disguise the practice of "destruction by excavation," which is sometimes applied.

PPE Requirements

Human Factors: The frequency with which deminers fail to wear PPE suggests that equipment and clothing is either inappropriate or is already at or beyond the "wearable" limits of weight and mobility, though some improvements could be achieved through better field discipline. Any assessment of PPE requirements must recognize the limits of acceptability by addressing the human factors, including environmental conditions and ergonomics.

Associated Equipment: The systems approach to risk reduction includes an understanding of the interface between the deminer and his/her associated equipment. In this respect, the selection and use of hand-protection and appropriate hand-tools is particularly important and should be considered as an integral part of the PPE requirement.

Blunt

The explosive content of a PMN is "...just under the threshold for explosive injuries". Larger explosive content is generally confined to fragmentation mines where the lethality of fragmentation is more significant than blast. The DDIV provides no evidence to suggest the need to protect against overpressure from AP blast mines, yet they are conducted by Canadian Defence Research Establishment Suffield (DRES) suggest the possibility in certain cases of "...severe, critical or unsurvivable injury." The Fragmentation of Current accepted levels of PPE provide inadequate protection against fragmentation injuries. Larger mines at close quarters, and procedures/processes must be applied (with conviction) to reduce the risk to a tolerable level. PPE should continue to be designed to protect "secondary victims" against fragmentation injuries.

Boots

Successful boots which are designed with at least a 30mm stand-off may reduce injuries when stepping on small blast mines, but they impair mobility and are unlikely to be accepted for general use. In addition, there may be some specialist application. There is no clear evidence to suggest that blast-resistant boots, without any stand-off, would reduce injury to an acceptable level. Indeed, some evidence suggests that such boots may actually worsen the severity of leg and groin injuries when stepping on a PMN. Further evidence from study and independent investigations are required. Consideration should be given to the development of an international standard for reporting and for the conduct of investigations and inquiries. Though local requirements may vary, there is a need to maintain objectivity and impartiality and to facilitate lessons learned about risk and safety issues.
Comparative Study of Different Lightweight Head Protection Systems with Full-Face Visors for Humanitarian Deminers

Introduction

A key component of any Personal Protective Ensemble (PPE) for demining is the helmet and/or face shield. For obvious reasons, protecting the face of a deminer is of utmost importance in case of an accidental detonation of a mine. Currently, a wide range of head and face protective devices are available for the deminer, and this study attempts to evaluate these devices from several perspectives.

Like any other explosive, when an AP landmine detonates, a blast wave is generated along with an impulsive burst of fragments and an intense fire flash spreading in all directions. The impact and ensuing interaction of the blast wave from such a detonation with a victim (a deminer) can lead to a wide range of effects. Under extreme conditions, intense blast loading can lead to shearing of body parts. These injuries occur in the form of traumatic amputations, such as those observed in victims who have stepped on landmines. With respect to the effects that are important for the deminer's head, the extreme levels of blast strength are usually not considered, as the head is usually at least 0.5m away from the mine.

Yet, at these distances, several different effects can occur due to the detonation of a blast type AP mine. The overpressure of the blast wave emanating from the mine can cause injury to the deminer's ears. While ear damage can lead to loss of hearing, this injury is not life threatening, but it is one with potentially detrimental social consequences. When the blast wave interacts with the head of the deminer, violent levels of acceleration can be induced in the victim's head. Due to this acceleration, a range of minor to deadly concussive injuries can occur.

Fragmentation is a potentially lethal threat, even when coming from a blast-type AP mine. Fragments, traveling at extreme velocities, can be composed of gravel, pebbles, sand, mine casing pieces or parts of the mine mechanism. Injuries to the head from fragments include cuts in soft tissues as well as injuries to the brain, brain stem, face and eyes. The eyes are particularly vulnerable to fragmentation injury with blindness being the obvious consequence.

Hear from a blast also can potentially cause injury. If the victim is sufficiently close to the mine, such that parts of the body—including the face—become engulfed in the fireball of the explosion, burns can occur.

In order to examine these effects and to evaluate the ability different technology in head protection has in preventing or reducing these effects, simulated blast-type AP mines were detonated in front of instrumented anthropomorphic mannequins realistically placed in the deminer's prodding position.

Experimental Details

Positioning of Mannequins and Instrumentation

Full-scale tests involving instrumented anthropomorphic Hybrid II mannequins (representing the 50th percentile North American male [height: 1.75 m, weight: 77 kg]) were carried out where the mannequins were placed in deminers' positions. In order to place the mannequins in the correct position, an advanced blast resistant positioning apparatus was utilized (Figure 1). For the purposes of this study, two mannequins were used, one on each side of the simulated mine. One mannequin, in a kneeling on one knee position with its sternum 0.066m to 0.08m from the simulated mine (corresponding to 0.8m distance between the mine and the mannequin's nose) represented the typical distance a deminer's sternum would be from a mine while using a prodder of about 40cm (±10cm). In order to examine the effect of distance, the other mannequin was positioned such that its head was 0.70m from the mine. Figure 1 illustrates this test setup, with mannequin one (on the left) being 0.80m from the mine (at the nose) while mannequin two is at 0.70m distance.

Simulated mines, consisting of C4 plastic explosive packed snugly into injection molded puck-shaped plastic containers, were buried with one cm of soil or overburden in front of the mannequin. Three sizes of simulated mines, containing 50, 100 and 200g of C4, were chosen to represent a wide range of blast type AP landmines.

In order to quantify the performance of the helmets and visors, each mannequin was instrumented with a cluster of tri-axial accelerometers (PCB) in the head along with a pressure transducer (PCB) for measuring overpressure at the ears. All instrumentation lines were connected via appropriate power supplies and signal conditioning equipment to a computerized data acquisition system. For further detail concerning this experimental procedure, please refer to [Appendix A.1]. This method of testing is currently under consideration for use by the Canadian Center for Mine Action Technology (CCMAT).

Helmets and Visors Tested

There are several different types of lightweight head and face protection systems available to the deminer, designed and manufactured by several organizations. In this study, three types of lightweight protective helmets were evaluated. The first was the Sport-1 Helmet developed by Med-Eng Systems, which is composed of a lightweight sporting helmet (used for such activities as climbing or kayaking) with a full-face visor mounted onto it (Figure 2a). The sporting type helmet was chosen by Med-Eng because it is lightweight and fits the head snugly, providing enhanced stability and comfort compared to other common types of helmets. The Sport-1 Helmet visor is mounted by means of aluminum blocks, which are bolted to the helmet and the visor. Standard locking pins allow the visor to be held securely over the face or above the forehead. The visor extends from beneath the chin to the top of the forehead, thereby covering the entire face. The helmet uses a customized three-point retention system, which secures the helmet snugly to the head through the use of a chin-strap.

The Sport-1 Helmets, as constructed by Med-Eng, are normally made with visors of a standard thickness of 5.7mm. In order to observe the effect of thickness on the blast integrity, fragment resistance and other performance measures for this study, the Sport-1 Helmets were made with visors of two other thicknesses, in 0.66, 0.68 and 0.70mm.
nominal thickness values, 4.5mm and 5mm.

The second type of helmet tested was a construction hardhat mounted with a full-face visor (Figure 2b). This system, designed and constructed by another organization, has a 4.3mm thick ballistic visor mounted by means of plastic mounting blocks on both sides of a construction hardhat. The visor covers the area from beneath the chin to the top of the forehead. Retention to the user's head is achieved by the use of an under-the-chin strap. The visor is mounted on the back of the helmet such that the brim of the helmet does not interfere with the visor (the helmet is worn backwards so that the visor covers the face). The visor cannot be locked in the open or closed positions, rather it is held by friction. This Hardhat head protection system has not been developed by MES, differing significantly in design from the Hardhat helmets (Hardhat-1 and Hardhat-2) evaluated in [Appendix A, 1].

The third type of system tested, also built by another institution, is a full-face visor mounted on an Adjustable Headband (Figure 2c). No chinstrap is provided on this Headband system, but it is expected to remain snug on the head by adjusting its circumferencethe visor is of sufficient size to provide continuous protection from the neck up to and including the forehead. Similar to the Hardhat system, this visor cannot be locked open or closed, but it is held by friction. The nominal thickness of the visor is 4.8mm.

Use of a Chest Plate

The HDE Demining Ensemble, developed by Med-Eng Systems to provide protection to the deminer's body, uses a chest plate designed to integrate with the visor of a demining helmet. The bottom of the visor tucks in behind the chest plate, thus providing continuous protection from the chest to the top of the head (Figure 2a). The role of the overlapping chest plate and visor is to prevent the mine blast from reaching inside the visor and to aid in keeping the visor over the deminer's face during such a blast. During most tests with the Med-Eng-Sport-1 helmets, the full HDE Demining Ensemble with its chest plate, recommended by Med-Eng Systems, covered the body of the mannequins. In some tests, in order to evaluate its effect, the chest plate of the HDE was removed.

Full-face visor mounted on adjustable headband Figure 2c

The Hardhat and the Headband systems, on the other hand, are not designed to be used with an integrated chest plate and are most often used with some sort of soft ballistic apron or vest. Due to this use, there is a clear and open path for the blast to reach inside of the visor and the user's face. Furthermore, due to the shape of these visors, they would not be able to integrate properly with the HDE chest plate. With these factors at hand, in the tests described herein, these two systems were used in conjunction with the HDE Demining Ensemble, but the chest plate was removed in order to simulate a standard flaskvest or ballistic apron.

Results and Discussion

Visor Penetration

One of the main objectives of a visor is to protect the face from fragments emanating from the detonation of the mine. Whether a visor will be penetrated is dependent on several factors, such as visor thickness, mass of the explosive charge, distance between the mine and the visor, depth of burial and the size and density of fragments in the soil.

From this study, it has been ascertained that even a slight increase in visor thickness can have a dramatic effect on the levels of fragmentation protection to the face and head. Figure 3a illustrates the effect of the different visor thicknesses mounted on the Sport-1 helmet; the thinnest gauge visors performed poorly when compared to the thickest visors. On average, over all charge sizes and distances from the charge—the 4.4mm and 5mm visors were penetrated 1.8 and 1.75 times per blast, respectively, while the 5.7mm visor was penetrated only 0.20 times per blast. These results indicate that for the thinner visors between one and two fragmentation penetrations were likely to occur in each test, but for the thicker visors, a penetration would occur on average only every fifth test. These results are averaged over all three sizes of simulated mines used at both standoff distances.

The effect of charge mass on visor penetration is illustrated in Figure 3b, which shows that the number of penetrations through the Sport-1 Helmet visors (all thicknesses) per blast increases with charge mass from 0.3 per test for 50g C4 to 1.4 for 200g C4.

When a mine detonates, the fragment density (the number of fragments in a given area) decreases dramatically with distance from the mine. Therefore, as a deminer increases his distance from a mine, or any other detonation, one can expect to interact with, on average, fewer fragmentation particles emanate. Furthermore, as the distance increases, the energy of the fragmentation particles decreases. Due to these factors, one would expect fewer fragmentation penetrations as the distance increases from the mine. This supposition is confirmed in Figure 3c where the number of penetrations per test at a distance of 0.8m, on average, was approximately half that when the visors were 0.7m from the mine.

Visor Shattering and Cracking

The penetration resistance of the Hardhat and Headband systems has not been directly compared to the performance of the Sport-1 helmets because a different phenomenon occurred with these systems.
Failure than the visors manufactured by Med-Eng Systems. Figure 4 shows the percentage of helmet visors which cracked or shattered for all five helmet types when facing the 100g and 200g C4 mines (the 50g C4 mine results are not included, as this threat level never caused any visors to shatter). It can be seen that the Hardhat visor, which was the thinnest of all those tested, cracked and shattered most readily followed by the Headband system.

Effect of Overlapping Chest Plate on Visor Remall

In order to provide effective and continuous protection to the face of a deminer during an accidental detonation, the combination of a full-face visor mounted on a stable helmet platform and integrated with an overlapping chest plate is imperative. A visor that is not securely mounted has a high probability of being removed during the blast event, creating the possibility of secondary fragmentation, overpressure, and heat reaching the exposed face. Figures 5a and 5b illustrate examples in which the visors of the Headband and Hardhat systems were ejected from the mannequin’s face during the blast event. Figure 6 illustrates that when a visor is not properly held in place on a stable helmet platform combined with an overlapping chest plate, it is much more likely to be removed from the face during the blast. The Hardhat and Headband systems had their visors remained from the face in 100 percent of the 18 tests, independent of charge size and distance from the mine. However, when the Sport-1 helmet was used with an integrated chest plate, the visor was removed in just over 25 percent of the 19 tests (usually when a larger charge size was used or when the visor was at the closer distance to the charge). The benefit of a stable helmet platform alone was illustrated when the interfacing chest plate was removed from the HDE, as the visor was removed in 60 percent of the 14 experiments. That is, more often than when the Sport-1 helmet was used with a chest plate but much less than when an unstable mounting platform was used without an integrated chest plate. It should be noted that the Sport-1 helmet, as part of this study, was in its prototypical stage. Due to the occasional failure when the visor was removed during the mine blast, the Sport-1 helmet is being extensively revamped and improved in order to prevent similar occurrences in future tests.

Consideration of Heat Effects

Figure 7 provides evidence that protection from the thermal effects of a detonating mine is required. In both pictures, the detonation of the mine created a fireball that easily reached the heads and torsos of the mannequins. In order to protect the deminer from receiving burns as a result of this fireball, protective clothing is required. The ability of a visor to remain in place during the blast event will prevent burns.

Effects of Helmets and Visors on Ear Overpressure

As part of this study, pressure measurements were made at the ear of the mannequin in order to evaluate the effectiveness of the different head protection systems in reducing the overpressure levels that reach the ear of a deminer in the case of an accidental detonation. Figure 8a shows typical traces of overpressure measurements obtained at the mannequin’s ears when they faced a blast from the 100g C4 simulated mine at a distance of 0.70m. Figure 8b illustrates traces when facing the 200g C4 simulated mine at a distance of 0.80m. From both figures, it can be observed that the peak overpressure for the Sport-1 helmet is essentially independent of visor thickness but that the peak pressure increases significantly for both the Headband and Hardhat systems. This result is not surprising, as one would expect the peak pressure reaching the ear to be a function of geometry. The Sport-1 helmets have the advantage because their visors are tucked behind a chest plate to limit the blast overpressure’s ability to reach the ear. The Hardhat and Headband systems do not operate in this fashion, so the blast wave can easily get behind the visor and readily reach the ear, which most likely contributes to the higher overpressure (this factor also causes the visor and headgear to be easily removed from the head during the blast event).

Figure 9 shows average peak overpressures mea-
Effects of Visor Position on Head Acceleration

A visor is an essential part of the overall head and face protection system and should be kept in a closed position during demining. In many demining theaters, deminers tend to keep their visors open to gain comfort in a hot climate or due to limited visibility because of scratching and fog. This practice may have severe consequences in the event of a detonation. There is the obvious effect of leaving the face exposed to the blast wave and fragmentation, thereby dramatically increasing the chance for severe injury to the face, such as blindness. However, the other effects not often thought of are the accumulative or concussive effects on the head. With the visor open, a large concave surface area is created for the helmet and visor to catch and trap the blast wave. This effect can cause the head to be accelerated backwards at a rate much higher than when the visor is in the closed position (the blast can pass over the relatively streamlined, convex surface of the visor in its closed position). Figure 10 shows the effect of open and closed visors on the head acceleration for the Sport-1 helmet and for different charge masses. The effect of a visor position is obvious, as the peak acceleration can be an order of higher magnitude with an open visor compared with a visor in the closed position.

Conclusion

An initial evaluation of a range of lightweight demining helmets has been performed from several perspectives. It has been shown through tests designed to accurately represent an actual demining accident scenario that, with respect to lightweight helmets, several factors must be considered in order to provide the deminer with adequate protection.

By performing tests with visors that range in thickness, it has been demonstrated that even a small increase in visor thickness can tremendously affect the ability of a visor to prevent high velocity fragmentation from reaching the face of a deminer. In the tests performed for this study, it was demonstrated that by increasing visor thickness from five to 5.75mm, one could decrease the chance of a fragment penetration by over eight times. Furthermore, the effect of decreasing one's distance from a mine should have a marked effect on whether a fragment would penetrate a protective visor—thus indicating the importance of increasing stand-off distance whenever possible.

Visor manufacturing processes were also illustrated to be of paramount importance. The visors not manufactured by MES were more likely to catastrophically crack or shatter into several pieces, whereas the visors on the Sport-1 helmets did not show this tendency. In fact, it was demonstrated that visor thickness is not indicative of potential for failure compared to how well the visor was manufactured.

In order to ensure that the deminer is protected from a detonating mine, it is required that a protective system remain over the head and face throughout the blast event. It has been demonstrated that in order to ensure this scenario, both a stable helmet platform and an integrated chest plate are essential. The Hardhat and Headband systems, which have neither feature, had their visors removed from the faces of the mannequins in every test—even against the smallest of the charge sizes. On the other hand, the full-firing Sport-1 helmet (unlike the Hardhat, which, like any other construction hardhat, sits high on the head) and visor that can be integrated with a chest plate were removed in far fewer tests and, usually, only when facing a large charge size.

One rarely considered benefit of having a visor remain in place over the face throughout a mine detonation was demonstrated by observing the intense short-lived fireball, which can easily engulf the deminer's upper body, including the face. The presence of a visor will ensure that burns injuries are kept to a minimum. The overpressure at the ear was also shown to be positively affected by a proper head protection system, as the Sport-1 helmets consistently permitted lower peak overpressure levels to reach the ear, as compared to the Hardhat and Headband systems.

All of this evidence provides a clear picture of the equipment required by deminers to effectively perform their duties. If one chooses a lightweight head/face protective system, it should have several key characteristics. It should have a visor that is manufactured properly in order to prevent catastrophic failure and, one of sufficient gauge to minimize the possibility for fragmentation penetration. It should be mounted onto a stable platform—most likely a snug fitting and strong helmet with a comfortable and effective retention system. How the helmet interacts with the other protective equipment should also be taken into account. The bottom of the visor should integrate with an overlapping chest plate, as this structure greatly enhances the ability of the helmet to function properly. Finally, the helmet's use and care is of great importance. If the visor is treated properly in order to prevent scratches and maintain clarity, it is more likely to be used in the down, or closed, position. A visor used in the open position not only opens the face to the threat of fragmentation and heat but it also increases the possibility of concussive injury in the event of a detonation.

Appendix A

Acknowledgments

The authors would like to acknowledge the extensive contributions provided by the design, testing and development team: S. Kalaam, M. Smith, P. Voisine, J. Myles, B. Lavallée, R. James, M. Schliewer and R. L. "Abbe.

Contact Information

Med-End Systems Inc.
2400 St. Laurent Blvd.
Ottawa, ON, Canada K1G 6C4
Tel.: (613) 739-9646
(800) 644-9078
Fax: (613) 739-4536
E-mail: jscarso@med-eng.com
Website: www.med-eng.com
"Medic, Medic, Medic" the radio bursts into life, the voice louder than usual, almost excited but in control.

A definite sense of urgency delivered with those few words.

Everyone is quiet, nobody breathes, only the radio is alive.

Just listening and moving into action:

"Mine strike, a man is down, Team four, lane two. Injuries to hands and arms, Still conscious, bleeding too much. Over."

Not really thinking, now just reacting: "Hotel Zero Charlie, Roger—we're mobile for your location. Wait. Out."

By the time the message ends, the emergency team is on the way; there are four deminers to rescue the man from the mine field, two trauma medics and an ambulance with driver, all moving swiftly and smoothly.

This well-oiled, well-rehearsed rescue machine glides into action, no need to talk or discuss.

Everyone on auto-pilot, slipping easily into practiced drills, all praying that it's just another training scenario.

But everyone knows by the butterflies in their chest that this is the real thing.

We knew it was real because we heard the explosion.

It wasn't the loud crack we're used to hearing when we blow up a stockpile of mines.

No, this was an almost gentle "pop."

The violence of a small explosion softened by distance.

On site, the leader heard the bang. He had sent the radio message almost before the noise had finished, before it registered in his conscious mind that an accident had happened.

No time for emotion or panic. He has a job to do, stay on top, in control.

Don't let anyone just rush into the mine field to help—we don't want another accident.

Team leader stops all the other deminers from working.

Get a head count; is everyone accounted for?

Make a quick rescue plan, does this without thinking.

Almost seems easier than the practices he's used to.

About this time, I've made a call to headquarters, told them the facts, which hospital we intend to go to,

The casualty's identification number and blood group.

Then the rescue team and medical team arrive; it seems like ages since that first radio call.

It's been exactly two minutes, forty-seven seconds.

The medics start to call to the casualty—he doesn't respond. Three minutes since the explosion happened.

The rescue team of four deminers start working in pairs, carefully and calmly they begin to clear a route. Once they reach their friend, I go in.

It's now been eleven minutes, twenty-two seconds. As they put him on the stretcher, I begin telling the medics what to expect:

"Right hand missing, damage to left and right upper arm, both thighs are bleeding, unconscious, breathing O.K., wrist stump, pumping blood."

I apply pressure to the stump, can't stop the blood from spurting, hands slip, can't get a good enough grip.

Now we're back in the Safe Lane.

Before I realize, the medics have put a drip in him starting to replace some of the vital fluid he's lost.

Then a Smartie, then a bandage, bleeding almost stopped.

All the time, the medics are talking to him.

Three calm, professional, caring voices.

I realize that I am out of breath.

I can't remember when I started breathing again.

It's been thirteen minutes and thirty-seven seconds.

Loaded in the ambulance, he starts to come around.

Trying to talk, so we listen.

He says, "I'm sorry I let you down."

Pain is starting to take hold.

One small morphine injection.

We're on the way to the hospital now, speeding down rough, narrow tracks, sirens screaming, seem strangely far away.

Pull through the gates, tires screech as we stop.

They are ready for us.

Headquarters has done its job.

And then he's gone, taken from us.

As he disappears, his last words to us are "I'm sorry."

Forty-five minutes exactly.

I look around at the medics and the driver.

They all look really exhausted.

I'm tired.

Reprinted with permission from Handicap International.

Contact Information

Chris North
Chrisnorth69@hotmail.com
or
HI Djakova
E-mail: hi.djamen@eurnct.yu

by Chris North, Handicap International
"What We Do"

With protection on and helmet tight,
Equipment tested and ready.
We cross the line to start the search,
Our movements slow and safe and steady.
Through waist high brush and piles of rubbish
And house after house in a line,
We clear the ground and mark our route
To hunt the hidden mine.
Each day we walk the ground we’ve cleared
To prove the job’s done right.
We check each morning to ensure
No mines were laid last night.
With weather so cold
The prodder burns the fingers of your hand.
Other times so hot sweat stings your eyes;
It takes so much effort to stand
Whatever the weather, be it hot or cold,
No matter what comfort we need to endure,
We search the ground with prodder in hand.
We must be safe, we must be sure.

"The Silent Assassin"

This quiet sentry waits, he doesn’t care how long.
He waits alone or in groups for you to come along.
The assassin is ready, he remains ever alert.
He can wait for years to do his job, he cares not who’s killed or hurt.

The very old or the innocent young, he sees them all the same.
He lies in wait to trap them all, he must achieve his deadly aim.
We look for him, we hunt him down wherever he may lie.
We play with him his deadly game, one of us must surely die.
Like night of old with armor for battle we prepare.
Slowly moving forward, hunting, we probe the ground with care.
Then something hard is felt beneath; if it is a stone, then all is fine;
But if not, we now prepare for mortal combat with the mine.
With visor down and armor on and with prodder at the ready,
We gently probe beneath the mine, stay cool, stay calm, keep steady.

So far so good, no booby traps so there is one less worry.
Slowly now with steady hand uncover the mine, don’t hurry.
There he is, still waiting, even after years in the ground.
His body of plastic, as good as new, still working, still sound.
Carefully, with steady hand, now comes the vital part:
Gently lift, reach underneath and unscrew this demon’s heart.
It’s over now, this battle won, another victory filed;
One less assassin in the ground.
One less to hurt a child.
This is one battle won, but the war still goes on.

"What Is He Thinking?"

When a deminer steps forward to do his work,
Who knows what’s inside his head.
Who knows what he thinks whilst doing this job,
Where just one mistake could leave him for dead.

Does he think of his wife and his children,
Does he think of their future?
If he makes a mistake and sets off a mine,
Who will take care of them after he’s dead?

Demining he doesn’t think of such things,
Focus on the job instead,
Mind just concerned with finding the mine.
If his thoughts wander, he could end up dead.
"Risky Business"

No matter how much we follow the rules, No matter how hard we try, Each time the prodder goes in the ground We know we could die.

Each time we search the ground ahead Using tripwire feelers with care, A blinding flash could be the first we know That a tripwire mine was there.

That even when we checked the ground ahead With detectors tuned so fine, We know when we move forward that Our feet could find the mine.

We put all these drills together, Confirm and check and test, Working hard, constantly improving To make our drills the best.

So we trust in all the drills we use. To improve, we continually try. But demining is a risky business, And deminers often die.

"Who Knows"

It's when I'm alone that it starts to bite, When I've nothing to do and it's late at night, These thoughts creep in, Evoking worry like sorrow, Will I survive the day or be killed tomorrow?

Will the next landmine I touch Be the last thing I see? Will I be killed or maimed, What will happen to me?

I'm sure it won't happen, but I know that it might. These thoughts come to haunt me Sometimes in the night.

When night drifts away and Morning seeps through, My confidence returns in the things that I do, Worries recede as the morning turns bright, I am eager again to get on with the fight.

Those haunting memories Seem like decades away, But they return at the end of each day. Confidence deserts me, The day draws to a close. Will I survive or die tomorrow? Who knows?

Poems reprinted with permission from Handicap International.

Chris North is a retired senior non-commissioned officer and EOD operative working for Handicap International. He leads a team of 30 men who risk their lives every day, locating and disposing landmines in Bosnia. His wife, Junior, and their two young children live in Scotland. His poetry collections have been published in two books, "Risky Business" and "War Trade."

Contact Information
Chris North
E-mail: Chrisanude6@hotmail.com

Handicap International
Djakova
E-mail: hi.deminers@gmail.com

https://commons.lib.jmu.edu/cisr-journal/vol4/iss2/1
Hobby Deminers in Quang Tri Province

As they enter the puberty years, those same boys who might have played with the UXO's they could find lying exposed everywhere in Quang Tri might also become “Hobby Deminers.” Equipped with homemade metal detectors, these boys now actively seek out UXO, which they can still sell for a few cents to the dealers.

If those boys survive their learning experiences, they might well become adult “Hobby Deminers,” the nickname given by professional deminers (Vietnamese military and NGO contractors) to the civilians who make a living seeking out, defusing, transporting and selling UXO for profit.

The equipment the “Hobby Deminers” use is ingeniously constructed. They analyze the component parts of commercially produced metal detectors and reproduce the technology using what they could find: the rings cut from metal transistor radios tuned to pick up the faint radio emissions most metals give off, hi-fi stereo headphones and scrap wire.

Most of the time, the “Hobby Deminers” unearth relatively small UXO, antique barbed wire, etc. Sometimes, they get… lucky! The man in the picture below, sitting on the ground beside his find, certainly was lucky, twice. He found an unexploded 500 lb. bomb with the entire explosive material still inside (bonus payment) and defused it for transport without making any final mistake in the process.

At the scrap metal dealer, the UXO's are processed for sale. Precious metals must be separated. Often, a young man will use a hammer to knock the aluminum rings out of the impact detonators taken from 105mm artillery rounds. The detonators are still technically “live.” Aluminum and copper are the most valuable of the scrap metals commonly found littering Quang Tri. The steel in the jackets of expended artillery rounds and bombs, for the most part, is recycled and used by automobile manufacturers.

The Vietnamese government attempts to discourage civilians from handling or seeking out UXO. The people of Quang Tri are fighting against the pressures of poverty even though there are national-level initiatives and programs in place to enhance the transportation infrastructure of the province and to attract business and international aid investment to Quang Tri. For the near term, however, there are few incentives to discourage children and adults from trying to make some money from the dangerous scrap metal trade.

Contact Information
E-mail: patr@hotmail.com
RONCO Executives Talk About Demining Integration and the IMAS Contract

An Interview with Lawrence Crandal, Stephen Edelmann and A. David Lundberg

Can you give me a brief history of how RONCO got started with demining?

Stephen Edelmann: We started working internationally in 1980. In the late '80s, we won an open competition to assist the U.S. government in running a humanitarian assistance program in war-affected Afghanistan during the Soviet occupation. Part of that program was training Afghans on the use of mules as pack animals so that they could bring supplies over the mountains. When that program was done, we suggested to the U.S. Embassy that they try a pilot program using mine-detecting dogs and to approach the Thai Army, who had a program, to contribute to the Afghanistán war effort. That was done, and the Thais contributed 14 dogs and trainers. We used the facilities that had been previously used for the mule training. The program was very successful, and the U.S. government asked us to expand it and establish a mine dog training center and to train a cadre of Afghan NGOs that, to this day, still continues to successfully operate in the form of an NGO we created. We left them with 92 mine-detecting dogs along with a full coterie of vehicles and supplies. This program has continued to expand and now employs over 4,000. This is a prime example of RONCO's philosophy—to help develop institutional capacity and indigenous personnel. From here, we moved to Mozambique where we won a contract to clear 2,200 km of road that allowed over one million Mozambican refugees to return to their homes. We have been involved in demining for over 12 years, probably longer than anyone in the field.

Can you tell me some of the challenges in setting up a successful demining program?

Edelmann: They range from logistics to cultural. Whenever we go, we are going into a difficult environment because it is post-conflict and that requires innovation on our part. We have no external support and have to rely on ourselves to set up facilities, procurement, security and administration.

Lawrence Crandal: Historically, the challenges have changed over time. Initially, for the Afghan program, the challenge was to get the U.S. government to agree to fund the first humanitarian demining program because there were no policy precedents, guidelines or experienced personnel in the bureaucracy. The only demining the U.S. military had done was for tactical and military purposes. Humanitarian activities were not to be found. The challenge was trying to resolve a very serious issue. There was a multi-billion dollar humanitarian program to assist the Afghans, but a lot of the people we were training were being killed or maimed by mines. We were seeing our investments in these people lost. Washington had no sympathy. There was no lobby; there were no handbooks that showed you how to do it, and a conservative bureaucracy was afraid of it. We finally involved a sympathetic senator from New Hampshire and a Texas congressional aide, and they successfully lobbied for the program. That was done, and the program started. Once we got the demining program going in Afghanistan, we tried to hand it off to the U.N., and they would not go anywhere near it. They said, "Oh no, we don't do this." Again, it was because of a lack of precedent and experienced personnel in this area. We wanted to phase out and institutionalize it, so we approached various international NGOs, and no NGO would touch it. So, we ended up running the program many years longer than we would have liked and finally handed it over to the U.N. Today, we are facing different challenges. Dave is starting a demining program in Albania.

A. David Lundberg: The Albania program is remotely located on the Kosovo-Albanian border. There is no infrastructure that you can plug into. We are essentially picking up a piece of our Bosnia operation and moving it to Albania. Finding housing, medical supplies, food, transportation—everything you need for this type of operation—is part of our concern. We must import Bosnian deminers into Albania because there are no trained in-country personnel available. Anytime you are working in the developing world, it is difficult. The biggest challenge we face is building and developing indigenous capacity. It was easy to do in Kuwait, which was a huge operation, and it was easy to bring in experts and machinery; do the job and leave. Building indigenous capacity to leave behind, that is what gets difficult. You have to affect both training and attitudinal changes. For instance, it is typical to hear that Muslims won't work with dogs. That is simply not true when you get them exposed to the use of dogs. When we went to Mozambique, we were told by a number of people that there would be no way we would get them to use dogs because the Portuguese use dogs as police dogs and attack dogs. You just have to overcome these stereotypes. RONCO has been able to overcome this because we started as a development firm. We have a history working in the developing world, so we know how to work in that environment, and we brought our expertise to demining. It is, initially, the same. You are just dealing with a different end product. You are developing deminers, dogs, logistics, people and medical support.

How do you monitor the success or difficulties of your established programs once you have left a country?

Edelmann: With the Afghan program, we sent people back periodically for a number of years to monitor the dogs and the training. In addition, we were tasked with incorporating a mine dog program into the military, which is winding down. We will probably use

The Journal of Conventional Weapons Destruction, Vol. 4, Iss. 2 [2000], Art. 1

Margaret Bust, MAIC

Ronco's deminers ready to work his day in the field. Photo by Tony Miles/RONCO.

The Afghanin Mine Training Center became the first mine dog center. RONCO originally imported pack mules from Mozambique and Tanzania to help war-torn Afghans get supplies over the mountains. Photo c/o RONCO.

Features
the same tactic there. We will send people back to monitor the quality, training, etc. Our approach is to
wean ourselves from the program as quickly as possible consistent with the ability for our counter-
parts to take over. The Afghan program is doing great six years after we have left. That is the key. Can you
get back three, four, five years later and see what is operating successfully? We left the Afghans with the
capacity not only to function efficiently and effect-
ively in the field, but also from a financial standpoint.
This ability allowed them to approach donors with
confidence. One of the reasons is that donors can see
where their money is going from the financial sys-
tem that we helped them set up. In a donor’s mind,
that is a significant point. We try to establish a com-
petency technically but also efficient administration.
Which country you are working in and what their requirements are also determines what you need to
do. You may be at one end of the spectrum, like the
Afghan program where you are setting up everything,
or the opposite end, like in Nambia where you are
only doing basic demining.

Crandall: In Afghanistan, we created an NGO in
Rhoda, a government capacity was created. In the
Balans, RONCO helped develop three commercial
companies, and they are operating and bidding on
projects on their own and, in some cases, becoming
part of our competition and sometimes our partners
as well.

Edelmann: Our clients, for instance, like the U.S.
Department of State, determine these tasking.
Collaboratively, we come up with a program that
works. In the Balans, we had to set up three private
countries because the government, at the time, of-
ered us little choice. The Bashian-Croat side had
no working government, the Serbs were considered out-
laws and the Muslims, like many others, were in dis-
array—this is what the situation was like in 1996. An
NGO didn’t seem feasible because of impermissible
regulations. So, we decided to develop private com-
panies. The situation determines what we do.

Does RONCO just set up indigenous capacity, or
do you actively get tasked to remove mines?

Lundberg: It’s a little bit of both. In Rwanda and
Afghanistan, we were tasked with specific jobs. On
the Kosova-Albanian border, we were tasked with removing mines from the border and not to worry
about building indigenous capacity. In the case of
Mozambique, we cleared 2,200 km of roads. We
ended up going in and training Mozambicans from
scratch for dog handlers, logistics (and transportation,
and when we left, we left with that capacity sit-
ting there. We draw on that capacity to assist
RONCO with other demining operations like using
the Mozambicans on the Kosova-Albanian border.
We do this at far lower cost than using U.S. techni-
cians.

Edelmann: Here is another example of how much
indigenous capacity builds on itself. For instance,
there was uncertainty as to clearance rates and pro-
cedures, we were contracted by the DoD to perform
quality assurance in Guantamano Bay behind a Ma-
rine Corps demining operation. We brought in our
Bashian deminers. Not only does this keep your in-
digenous capacity working, but also, it is exceedingly
cost effective. People have said for many years that it
takes a lot of money to take mines out of the ground
—not so. In Mozambique, we were able to clear 2,200
km of roads at 31 cents a square meter—
the standard is $1.50 (U.S.) a square meter. It is not
the cost of taking the mine out of the ground; it is
the clearing of the area that is suspect. If there is an
explosion in a field and you don’t know if there is a
mine field there or, if it is an isolated explosion, you
have to survey that entire field and clear it.

Lundberg: In the case of Mozambique, we were there
for two years, and the initial mobilization costs were
high because you are starting up a whole operation.
The longer you are in a place doing this, the cheaper
it gets. One of our biggest problems is that many of
our efforts are short efforts—two to three months.
The costs for mobilizing to do 200,000 sq. m are
similar to the costs of being there for two years. So,
if you were to look at our costs for being on the job
for two months, the costs are pretty high. If you were
to exceed those costs two years, those costs per square
meter at the end of the day are going to be lower.
If Mozambique had been a two month program, the
cost would have been three to four dollars per

Are your surveys mostly done for you or do you
have to go and do the surveys?

Edelmann: It’s a mixed bag. We get tasked, as in
the Balans, with areas that survey work that needs to be
done. In Rwanda, the surveys had already been done.

Lundberg: We are very careful about going in behind
a survey that has been done. It can quickly become
fallacious to think that a survey may not have relevance. So,
we always check with what is there.

Crandall: We are starting a new project in Thailand,
and the surveys are being done now by other donors.
At the request of the Thais, our task leader is involved
in the scope of the work. Our man out there is moni-
toring the surveys on a regular basis, and he knows
the individual who is heading the survey and trusts him.

Edelmann: You are putting people in jeopardy. You have
to have confidence in the survey.

Many of the NGOs believe in the integrated
approach to humanitarian
demining. Demining, mine
awareness and victim
assistance are all aspects
that should go on
simultaneously and all be
incorporated for
humanitarian demining to
be successful. How does
RONCO, which specializes in
only one aspect, navigate
this approach?

Crandall: Integrated develop-
ment, which is what your ask-
ington about, is a concept that has
been played in the development world for about
30 to 40 years. It is rather long of tooth. Many of the NGOs have taken on this integrated approach as
a sort of mantra. There are better and more proven
approaches. Trying to integrate all aspects under one
organization just can’t happen, and, if it does, it is
under extraordinarily high cost. We found, as an in-
stitution and myself as an individual, that comments
about integrated mine action are suspect. Traditional
integrated development practices arose from differ-
ent development experiences than demining in post
conflict situations. While the client rules, we prefer
to market simpler, cheaper and demonstrably work-
able solutions.

Edelmann: It is one of those concepts that sounds
great. Why don’t we just integrate everything? The
integration factor becomes the goal, and you lose sight
of everything that you are trying to get done and ac-
complish—like saving lives.

Crandall: We are in the development business and
started as a development business. We added
demining in 1989. Demining is demining, as far as
we are concerned. We build private sector enterprises,
and we undertake agriculture and other development
projects. We see demining as a tool to open the door
for education, agriculture and other sectors. You are
looking at people that did it for over 30 thirty years,
so we are talking from experience. The people who
depend on us to make their farm fields and school
yards safe would lose if we tried to integrate.

Grafting dissimilar elements onto each other, while
attractive in the abstract, in our experience, isn’t the
best approach in many, if not most, demining situa-
tions.

Edelmann: Remember, you are looking at a company
that has been and is involved in a number of devel-
oment programs.

Crandall: Now, in the terms of demining, you are
integrating safety, medical, technology, and dogs
[and] funding. If you want to call that an integrated approach to demining, that is what we do. That is already a complex package.

How did RONCO get into using dogs as their primary focus?

Crandall: RONCO got started with dogs in Afghanistan. During the Soviet invasion, to take equipment into the country would have meant the Soviet air planes would have destroyed it. You needed a techn ology that would not draw a lot of notice to what you were doing. We knew that the U.S. Army had spent a great deal of time working with the Thai army, who was working with dogs in demining along the Cambodian border. We needed a low cost, efficient technology, and dogs were the answer. We contacted the Thai army and negotiated to pick up their handlers and dogs and flew back to Pakistan in what was then a covert operation.

Lundberg: Dogs are just one important part of our tool kit. We are using flails and other equipment to clear vegetation. There is a perception around the world that RONCO is dogs. That is true, but it is only one element to our operation. Whenever possible, we also integrate manual deminers and machines.

There is a lot of debate regarding dog use vs. manual demining. Many people are suspect of dog use in demining.

Crandall: We assume you are referring to productivity. We don't agree with that. Handicap International went into our operation in Afghanistan and took a look at our data on dogs. In the worst case, dogs were found to be twice as effective as manual demining alone. In the best case, it was 20-30 times more effective. We are finding that demining is more effective and safer using dogs. In some cases, like in Bosnia with the plastic mines, the metal content is so low that a metal detector can't find them, but you can with the dog because they detect explosive vapors.

Edelmann: Also, our dogs are trained on trip wires. There are not any other dogs in the world trained on trip wires. The way we train our dogs and handlers is unique. It remains the best approach from our perspective. Like explosive vapor signatures, tripwires create an acoustical signature that can be detected.

Lundberg: Invariably, when we hire a new deminer, the dogs may put them off. After working with us, they won't go into a mine field without a dog.

Edelmann: How do you demine a reinforced concrete bridge or building? Detectors are essentially useless. An integrated team of manual deminers and dogs, in our experience, is the most cost effective, safe and specific method.

Lundberg: You have to remember there are RONCO dogs and other dogs out there. The mine-detecting dog is becoming more popular, and other dog outfitters are starting up because of the success of RONCO. We have seen those dogs, and we have been called in to retrain those dogs. That is not to say that other companies' dogs are bad. There are some good ones, but there can be a big difference in dogs.

Can you tell me about the Integrated Mine Action Support or the IMAS contract?

Lundberg: We can talk about IMAS from RONCO's point of view, but we encourage you to talk to the State Department because we want to make it clear that we don't represent the U.S. government. There was a perception out there about this contract that, to some extent, may still exist. I had a number of NGOs sitting at this conference table to talk about the IMAS contract who were rather upset. It was perceived that RONCO suddenly had $230 million, and people wanted to know: Were we going to be sharing any of that money? That was everyone's opening remarks. They didn't understand what that contract was and is. The IMAS contract is an indefinite quantity-type contract in that [the] State Department tells RONCO what it wants done via task orders. RONCO is not controlling this money or [the] identification of the tasks. The State Department is giving us our guidance, our tasks and what they want us to do. Some of those tasks involve procurement of demining equipment only. There are probably over 50 tasks since we started in September 1999. Other tasks involve services we are being asked to provide. Right now, we are in Kosovo; we have six demining teams primarily picking up cluster bombs. We are going into the Kosovo-Albania border with two fully equipped teams for the next five months. We are going into Oman to develop a mine detecting dog capacity, which will be integrated with their demining programs. We do whatever the State Department directs us to do. We give them a written response to their task order request. Then we sit down and negotiate about the task order. In a few weeks, we are usually mobilized to action. We are putting a study team in Lebanon, as we speak, that is going to work on the efficiency of a mine dog program in Lebanon.

What is RONCO planning for 2000?

Lundberg: We are hopeful the World Bank will re-appear. Not a lot has come out of the World Bank in the last few years. Its financial strength and relative influence make it a potential strategic partner. The World Bank has taken some time off from demining but may be getting back into it, and, if that is the case, we will be bidding for those options.

Do you use any specialized Personal Protective Equipment (PPE)?

Lundberg: We deal with Second Chance, a U.S. firm that specializes in this [Personal Protective Equipment]. We have had them design specific RONCO designs like the blast collar, which is a little higher and deflects the blast.

Crandall: We just introduced into the Balkans a new helmet, which is really just a visor. The visor wraps around and decreases the need for a helmet, which can be very hot. That little bit of a change improves a deminers' effectiveness by 15 or 20 percent. We are always trying to make the deminers' equipment better.

Is there anything else you would like to mention before we close?

Lundberg: I would like to mention that in all the years that RONCO has been in demining, we have only lost two people to accidents. I don't think that you can find anyone who has been doing it this long that can say that. A big factor is the dog. Safety is a major factor with us. We are very careful with the deminers we hire. They have to forget the cowboy attitude and work with RONCO's operating procedures otherwise, they can't work for us. It pays off for us. We carry extensive insurance on our deminers, but, even so, our rates are low because of our accident rate.

Founded in 1974, RONCO Consulting Company is an international professional services firm with extensive knowledge in a wide range of development issues. Along with humanitarian demining, RONCO specializes in privatization and private enterprise development, agribusiness and procurement services. In 1999, RONCO won the open competitive bidding for the IMAS contract sponsored by the Humanitarian Demining Programs Office in the Political-Military Bureau of the Department of State.

Contact Information

RONCO Consulting Corporation
2301 M Street, N.W.
Suite 400
Washington, D.C. 20037
Tel: (202) 785-2791
Fax: (202) 785-2078
E-mail: roncowash@aol.com

Stephen Edelmann, Executive Vice President of Operations of RONCO Corporation since 1980, has been involved in RONCO's agribusiness, environmental, humanitarian assistance and demining operations in over 40 developing countries.

E-mail: sedelmann@roncowash.com

Lawrence Crandall, Vice President for International Programs at RONCO, has over 30 years experience managing and developing large and politically complex humanitarian programs worldwide.

E-mail: lcrandall@roncowash.com

A. David Lundberg, RONCO's Vice President of Operations, has addressed humanitarian issues from the perspective of an agribusiness manager, third world development manager and USAID Senior Executive. He has worked throughout Africa, the Eastern Bloc, the former Soviet Union, Asia and Latin America.

E-mail: roncowash@aol.com

In general, dogs are fully effective at finding explosives 10 centimeters below the surface. Neither dog nor detector can easily find mines under 30 centimeters of heavy clay soil. (Photo c/o Tony Allen/RONCO)
MOZAMBIQUE:
A Country Ravaged by Civil War and Nature

by Stephanie Schleier and Virginia Sandrie, MAJC

Mozambique, a nation fraught with the aftermath of civil war and, more recently, torrential downpours devastating the countryside, has attained sufficient stability to attempt the mammoth task of reconstructing its social and economic foundation. After suffering through 16-20 years of civil war, which eventually subsided in 1992, Mozambique's demining efforts were progressing when the nation was struck by Cyclone Eline in late February 2000 and Cyclone Hudah in mid-April 2000, complicating the demining mission. Initial reports indicated that mine fields that had been previously mapped for clearance had suddenly vanished, as the violent storms swept the mines to unknown locations. This movement caused demining specialists to fear that the exposed and/or shifted landmines would make rehabilitation increasingly more dangerous for the Mozambican people. Though the shifted mines were an initial fear, later reports debate the severity the displaced land mines pose to the rehabilitation efforts.

As demining activities were postponed until the flooding ceased, mine awareness campaigns have become more important in Mozambique. Confronted with the overwhelming reconstruction tasks, civilians now face the possibility of encountering "new" landmines. Not only is the population in the midst of rebuilding its country—repairing damaged roads, bridges, schools and infrastructure—but now Mozambique's demining teams must also conduct new surveys and redraw maps to pinpoint the shifted mines.

The Landmine History

During Mozambique's civil war, government soldiers and rebels scattered mines indiscriminately, rendering vast portions of the country virtually uninhabitable. After the conflict, landmine accidents numbered at approximately 40 per month. On average, 15 of these accidents were fatal. Currently, a total of 7,000 Mozambicans have been fitted for prostheses—a number the Mozambican people do not want to see rise. Presently, the United Nations believes Mozambique is one of the most heavily mined countries in the world. As records were not officially kept during the war, there is a large degree of uncertainty concerning the number of planted landmines: the reported numbers range from 400,000 to five million. Prior to the flooding, deminers had mapped much of Mozambique to assist the mine clearance efforts, and since 1994, deminers have removed approximately 18,000 mines. These maps also enabled government officials to warn citizens of unsafe areas.

Unfortunately, the rains have delayed mapping efforts. Deminers' efforts must begin anew, returning the focus from mine clearance to mine assessment once again. Another disturbing fact is an increase in the mine count, as floodwaters may have unearthed previously undiscovered mines. Jacky D'Almeida, director of the Mozambique Demining Program, stated, "We were beginning to see the light at the end of the tunnel. No one knows where the mines could be today."

Flooding Aftermath

The initial floods from Cyclone Eline tearing through Mozambique forced over 450,000 people from their homes and properties and killed an estimated 500. CNN news reports indicate 660,000 civilians were displaced from Chokwe, Xai-Xai and Chibato. Specialists believe that the floods likely pushed the mines to these high-density areas, resulting in another complication in the rebuilding and demining tasks. Furthermore, the floodwaters could take up to six months to completely recede, lengthening the detection and mapping process. One CNN news report estimated the cost to demine Mozambique at three million dollars, money the country obviously does not have to spare after the disasters after-effects of Cyclone Eline.

After struggling to pick up the pieces Cyclone Eline dispersed, Mozambique suffered another twist of fate when Cyclone Hudah struck in mid-April, hampering the humanitarian and demining efforts. Though the storm did not register as severely as Eline, Mozambicans were hardly prepared to endure another cyclone in the midst of rebuilding their impoverished country.

Mozambicans must now approach the reconstruction task with the utmost caution, as they are unaware of the precise location of the deadly devices. Uncertainty consumes every aspect of these people's daily routines. Landmines do not expire. Many relief organizations are unable to provide extensive assistance, as their supply trucks are not built to withstand a landmine explosion. Mozambicans face a dire situation: they are unable to return to their homes, farms or work, resulting in severely limited incomes for people whose country's economy has suffered the

Published by JMU Scholarly Commons, 2000

© 2000 JMU Scholarly Commons

JOURNAL: The Journal of Mine Action 4.2
worst at the hand of nature. The majority of the population lacks access to safe drinking water, food resources and medical facilities, and the floods have created a shortage of many essential items. In turn, this shortage has caused the prices of these items to skyrocket, which does not correlate with the restricted incomes of many Mozambicans.

Challenged not only with reconstructing their homes and communities, Mozambicans now also face multiple physical ailments. UNICEF officials have emphasized the outbreak of diseases that typically occur after massive flooding to include malaria, diarrhea, measles, meningitis, dysentery and respiratory infections. In a country where only 46 percent of the total population has regular access to safe drinking water, the majority of Mozambicans are now forced to subsist on contaminated rainwater, which can induce these severe diseases.

Humanitarian Action

To return the country to its previous economic status, the local population and humanitarian organizations must take action against the devastating effects Cyclone Eline left in its wake. President Joaquim Chissano of Mozambique has breathed the international community to forgive its foreign debts. Prior to the flooding, Mozambique was experiencing significant economic increase, as the economy was growing at an annual average of 10 percent. For a country whose reputation of poverty has dominated its existence, Mozambique appeared to be on the road to recovery when Cyclone Eline ravaged the countryside.

Because of the immediate need for villagers and farmers to return to their communities, the United Nations must redouble its Accelerated Demining Program (ADP) efforts originally begun in 1992. While landmine related fatalities had been steadily decreasing since the program commenced, demining teams fear this number will again rise as people will be unaware of the location and counteraction to take against the shifted landmines. Indigenous populations inhabiting previously cleared areas must now remember and relearn the appropriate procedures when encountering a landmine. Therefore, increased monies must be allotted to fund mine awareness campaigns to educate Mozambicans of the dangers of landmines. Mozambique urgently requires monetary donations and equipment to prevent a 10-year economic setback.

President Chissano has also implored humanitarian organizations, primarily the U.N. Development Program (UNDP), for monetary assistance to rebuild his devastated country. The UNDP estimated that a minimum of $450 million (U.S.) is needed to rebuild the homes, schools, hospitals and roads demolished by Cyclone Eline and Hudah. UNICEF has donated $1 million in educational and mine awareness supplies for the 30 schools Eline destroyed and has offered technical guidance in planning, monitoring and coordinating Mozambique’s government agencies in rebuilding the nation’s infrastructure.

The UNDP has indicated several categories of emphasis for a portion of the estimated $450 million. It has assigned $120 million to rebuild transportation systems, $65 million for agriculture, $26.6 million for administrative costs, $38.1 million for industry and $15 million for disaster control.

In addition to the monetary support, Mozambicans have found themselves in dire need of medical supplies. UNICEF is currently shipping essential medicine and safe drinking water in an effort to combat the outbreak of disease. They also have begun a national communication campaign aimed at preventing the spread of diseases.

Conclusion

The rippling aftereffects of Cyclones Eline and Hudah have beaten mercilessly at the heart of this devastated country. Only time and financial assistance can return it to its previous state. As displaced Mozambicans are slowly trickling back to their homes and communities, starting to rebuild their lives and towns, they must do so cautiously. The financial assistance and donated supplies Mozambique so desperately requires will enable Mozambique’s demining efforts to continue, eventually ridding the country of its horrendous and life-threatening problem and returning it to a state of economic stability and growth.

International Standards... (continued from page 51)

tests is required to determine the efficacy of blast-resistant mine boots and to judge their place in humanitarian demining operations.

Requirement(s): PPE is the final protective measure after all planning, training and procedural efforts to reduce risk have been taken. Deciding appropriateness of PPE depends heavily on local SOEs and should be the subject of an iterative risk reduction exercise using a formal process as set out in ISO Guide 51. A realistic minimum standard for PPE is that capable of withstanding the effects of blast and fragmentation.

Formal Evaluations: There is a need to encourage the formal trials of PPE available for use in humanitarian mine-clearance programs. Such a trial should be conducted under strictly controlled and repeatable conditions using criteria that agree with the field user community. Ideally, this trial should be conducted with U.N. approval and taken as a priority project by the recently formed International Test and Evaluation Programme (ITEP). The results should be made available to MACs and demining entities in the form of a consumer report.

User Trials: User trials complement formal testing and evaluation. They serve two purposes. First, they provide a means of testing locally manufactured or locally modified PPE against local threats without involving the cost and complexity of a formal international trial. Second, they provide local demining entities with immediate and sometimes more appropriate results under local test conditions. They encourage local confidence in the effectiveness of PPE.

Blast: PMN mine detonating during demining in a squattng/kneeling position:

- **Footwear protection, coverage appropriate to the activity, capable of protecting against the effects of a 240g of TNT at 30cm from the closest part.**
- **Eye protection equal to that offered by 5mm of untreated polycarbonate, capable of retaining integrity against the effects of 240g of TNT at 60cm. (providing full frontal coverage of face and throat in conjunction with jacket/sprono).**
- **Hand protection integrated into the appropriate design of hand tools. The tools should be designed to be used at a low angle to the ground, provide at least 30cm stand-off from an anticipated point of detonation, and be constructed in such a way that their separation or fragmentation in a blast is reduced to a minimum and include a hand-shield whenever possible.**

Fragmentation: Ballistic protection of "secondary victims" must be provided against the local fragmentation mine threat. It is generally acknowledged that tests for ballistic protection do not realistically replicate mine effects. Until an accepted alternative is developed as an international standard, the effects of a fragmentation hazard should continue to be evaluated by the STANAG 450 m/s V50 test or by independently verified user trials (involving at least three articles of equipment tested at the safe working distances defined in local SOEs).

Conclusion

In examining the vital demining issue of PPE and its effectiveness, it’s crucial not to overlook outside factors. While the study of PPE certainly must focus on its adherence to international standards, durability in the field and proper usage by deminers, through efforts like those of the WGPPE, these factors are integrated with other vital forces. These forces include environment, threat and supervision, among others. When all factors are considered, the most efficient and, above all, safe approach toward reducing risk is revealed. Also, not to be overlooked are industry practices outside the realm of demining. If SOEs are to be improved, the demining community may need to look no further than other successful risk-laden industries. The result of an intelligent and comprehensive study of PPE and its surrounding issues will inherently address issues such as the scopes of primary and secondary fragmentation, threats from lesser detectable mines and areas of the body most at risk. But only through examination of the broader picture can these issues hit home the hardest to understand and corrected.

Contact Information

Col. Alastair McAslan
Geneva International Centre for Humanitarian Demining (GICHD)
7bis, Avenue de la Paix
Cane Postale 1300
Geneva 1, Switzerland CH-1211
Tel: 41-22-306-1682
Fax: 41-22-906-1690
E-mail: a.mcaslan@gichd.ch
Website: www.gichd.ch
Central American Landmine Survivors: THE NEED FOR ACTION IN NICARAGUA

by Dr. William Bayse, Queens University, Kingston, Canada

Introduction

Landmines are indiscriminate weapons, wounding and killing not only soldiers but women and children as well. Although hostilities may cease, landmines continue to maim and kill 500 victims a week, the equivalent of 26,000 additional disabled persons each year. There are at least 250,000 landmine-disabled people in the world, and the number continues to grow.

The landmine issue will not end with the signing of a comprehensive treaty on anti-personnel landmines. There are complex problems in detecting and removing landmines, in preventing further injuries and in assisting disabled persons and disrupted communities to reconstruct their social, economic, political and civil infrastructures. Since landmines and other unexploded ordnance have serious inter-sectoral consequences for the reconstruction of war-torn societies, especially in developing countries, they are best addressed from a development perspective, which ensures due regard for the principles of equity, capacity building and sustainability. These principles suggest that the landmine-injured and war-wounded should not be segregated nor receive services which are inaccessible to the general population of disabled persons. This could be socially, and possibly politically, divisive.

Nicaragua

Nicaragua has the most serious landmine problem in Central America. Since the war ended in 1989-90, there have been a series of demining programs and a national rehabilitation policy has been partially implemented.

Approximately 100,000 mines (out of an original 130,000) remain in Nicaragua. The principal areas of mine concentration focus on the Matagalpa area, which had intense fighting, and Chiandega, which had 106,000 sq. m mined, especially near the Central American hydro-generating plant. Chiandega’s northern border of Honduras has 106 out of 206 km still mined and its southern border with Costa Rica has 16 out of 235 km mined. The central area of Nicaragua (Esteli, Jinotega) has 318 mine sites, representing 206 sq. km, and other areas of heavy mine concentrations. Unexploded ordnance is also a major problem.

Deaths and Injuries

A reliable system for documenting landmine-related deaths and injuries does not exist in Nicaragua. Available information, which includes only those injuries that are reported to the police or to a prosthetic service, must be considered as rough estimates. Health post personnel in the rural areas are not required to report the cause of an injury. In some rural areas where there are no authorities (health, hospital and educational), people do not feel that they will be helped if injured, so they do not report incidents. The Nicaraguan military reports that from 1987 to 1997, the civilian population had 46 deaths and 470 disabilities from landmines while the military had seven deaths and 88 disabilities.

Overall, landmine injuries are fewer now than during the war (93 percent occurred prior to the peace settlement). However, more civilians and children have recently been injured. ICRC sources indicate that there are approximately 80 civilian mine injuries a year, mostly involving children who are particularly susceptible to playing with landmines. For example, during the 1996 Christmas holiday, eight children were injured throughout the country in separate incidents. Thirty percent of landmine injuries are severe, involving multiple body systems and long term disability while 70 percent require simple amputation or cause vision problems. In mine incidents, approximately 20 percent die and the rest survive with at least an amputation and often injuries to the face, ears, chest and genitals.

An Italian NGO, MOVIMONDO has operated a program for six years and has direct contact with 7,000-8,000 war-injured persons, 15 percent of whom are prosthetic users. Their staff believes that there were at least 26,000 persons injured in the conflict. This estimate may be an under-approximation, as it may not take into account accidents that occur in remote areas.

NGO sources note that the overall magnitude of disability is very large in Nicaragua (approximately 12 percent of the 4.5 million population), but the conflict has been only a part of the problem. For example, the principal cause of civilian amputations in 1997 was diabetes, but there are few reliable statistics.

Need for Action

The landmine problem in Nicaragua is severe, requiring action in demining, awareness, rehabilitation and reintegration. Although there is a formal government rehabilitation plan, it appears to be overwhelmed by the magnitude of need. A principal problem is that the national rehabilitation program has limited financial resources for health staff, for the recurrent costs of prostheses and for job placement programs. A second problem is a lack of rural community confidence in the government system and apprehension in accessing it. Finally, there is considerable dysfunction in the families of disabled ex-combatants due to altered social roles after years of fighting and disablement.

Facing these challenges, there is an existing network of NGOs and institutions which are already cooperating and providing a basis for programming. NGOs with established programs in rural areas could cooperate in community-based rehabilitation (CBR) programs, which provide disability detection and re-

Photo c/o William Bayse
NICARAGUA...

As well as a practical transfer of functional skills to disabled people. This approach would improve access to basic rehabilitation services for the isolated, rural poor and provide an alternative where government services are limited.

Existing Ministry-supported health post personnel and brigadistas could also be recruited to provide basic rehabilitation services, building on the tradition of voluntary action. Multi-disciplinary teams could provide basic rehabilitation skills and training to health workers and volunteers, building up the CBR policy initiative of the government.

Prosthesis

The supply of prostheses is adequate, although accessibility to this service in rural areas is hampered by the lack of a distribution system. Decentralization of the system from Managua to the regional level is possible by using modular components as much as possible as well as mobile repair units.

A principal problem in Nicaragua concerns the affordability of prostheses. Agencies feel they are keeping up with demand, yet they do not receive requests for prostheses because clients have become aware that they cannot afford them. Rural disabled persons are unaware of charitable financial support for purchasing prostheses. Private sector involvement, perhaps on a regional basis, could lower the costs of prostheses significantly. Specifically, the costs of prostheses could be lowered by increasing the number of modular components. For example, the foot section could be produced and distributed on a regional basis. This may improve the affordability for the average Nicaraguan, especially for families of child amputees. At the same time, increasing the ability of persons to pay for prostheses themselves, either through NGO savings or credit programs, is necessary. It is advisable to do estimates of lifetime costs for prostheses, considering the need to replace them at least once every five years.

Reintegration

Initiatives for economic reintegration of disabled persons are extremely difficult in the current economic context. Nonetheless, disabled persons should not face additional attitudinal barriers due to their impairments in finding employment. Integration is needed, but there is no national group with this experience.

Development of a local disabled people’s organization with skills in advocacy and public relations would be useful in this process. These groups could also develop local savings and loan programs for prostheses and micro-enterprises.

Mine-awareness programs need to address the continued use of landmines for on-going conflict, revenge and land protection. Demonstration projects for isolated groups, such as the Organization of American States Program, are excellently focused and targeted programs which provide service to the most needy. They serve a strategic purpose of demonstrating to both the bureaucracy and the rural population that something can be done. Finally, the International Committee of the Red Cross Child Landmine Awareness program is a viable approach and should be replicated in these remote areas.

National Rehabilitation

The presence of a national rehabilitation plan in Nicaragua indicates that disability has attained a certain priority in the country. The Nicaraguan Ministry of Health is currently working with PAHO on a disability information system. However, a multi-institutional (civilian, military, social security and private) and multi-sectoral approach (Health, Education, Labor and Defense) is required to implement the national rehabilitation plan for more effective coordination of NGOs, government funded institutions and disabled persons organizations. Furthermore, policy refinement and key demonstrations of capacity in rehabilitation are required so that the Nicaraguan government has a solid consensus to proceed with rehabilitation development within the country.

Discussion

The short-term emergency aspects of large-scale landmine and war injuries have decreased in the Central American region in this post-conflict period. Nonetheless, three significant long-term trends are particular to the context of war-related injuries. First, major traumatic musculo-skeletal injuries often require life-long rehabilitation input; amputation is an excellent example. Second, successful socio-economic reintegration of disabled persons, both combatants and civilians, requires both public acceptance and a healthy economic environment. Third, mental health problems in affected persons are often unrecognized needs which underlie the failures of rehabilitation at individual and community levels. These needs are complex and interactive in Central America, and they require a comprehensive development approach which does not privilege the war wounded above other disabled persons but which allows their urgent needs to be met.

Institutional Linkages

Disability, because of its need for both personal change and social adaptation, demands a multi-disciplinary, multi-institutional and multi-sectoral approach. Management of disability problems requires interaction and negotiations between service agencies and can create opportunities to reestablish the basic philosophy of social service and economic reintegration.

The Nicaraguan government is concerned about the needs of landmine-injured persons and recognizes the political impact of continual reminders of former conflicts. Government links to local community organizations and beneficiaries are partial with little penetration to rural areas, especially those on border regions where landmines are most pervasive. Government coordination of rehabilitation services varies considerably, even though Nicaragua has a formal rehabilitation plan. In practice, the implementation of rehabilitation services is lacking due to a scarcity of trained personnel, continuing economic restrictions and a clear geographic bias towards urban settings. Some ministries (Health, Social Security and Labor) are linked in order to address communal concerns; however, the maintenance of four separate hospital and rehabilitation systems (general public, military, social security and private) wastes scarce resources. This duplication results in unequal access for those most in need. Nicaragua relies heavily on services provided by the NGO sector, yet at the same time, separate private services are available for those with sufficient resources. There is some coordination across these systems, yet it is uncoordinated.

Sustainability

The adequacy and stability of financial resources in Nicaragua to fully support the long-term rehabilitation needs of injured persons are modest. An emphasis on reducing costs of services by technological innovation and training less expensive rural health personnel should be combined with developing en...
NICARAGUA...

trepreneurial skills among beneficiaries and utilizing community savings and loan programs for ongoing equipment costs.

The quality and stability of rehabilitation personnel are adequate, even though the numbers are few. However, caution must be taken in training professional staff outside Nicaragua. Sufficient incentives and controls must be utilized so that trained rehabilitation staff return to practice. This requires the formal allocation of positions in rehabilitation in rural areas. Even with an increased number of trained staff, the demands on these personnel to be involved in planning and program development will escalate. Sufficient training in program planning, evaluation and policy development is also required to supplement their clinical skills.

The NGO sector has significant support from the public and has been only partially mobilized in the landmine survivor assistance issue. NGOs could be more fully integrated in areas of public education, primary health care, vocational training and public advocacy.

Post-Conflict Peace Building

During post-conflict periods, the increased prevalence and visibility of physical injury from conflict is a constant reminder that peace is crucial, yet at the same time, it can engender resentment if needs are not met. The situation in Nicaragua creates an opportunity to heighten the profile of disability on the humanitarian development agenda. If action is taken to catalyze sufficient resources to address these needs, disability can become an issue common to divergent groups, which evokes a sense of common purpose and an openness to develop a strategic vision for community-based peace building initiatives. Action on disability can provide both symbolic and tangible pathways to factions, to donor agencies and to civilian victims of conflict, which can diminish perceived barriers between disparate groups.

Regional Cooperation Issues

The countries in Central America differ greatly in their history of conflict, degree of medical rehabilitation, socio-economic infrastructure development and size and scope of conflict-related disability problems. There are, however, common conditions of physical security, economic under-development and social reintegration issues which can all be attributed to the landmine problem.

Opportunities for increased regional cooperation of Nicaragua in Central America should include considerations of economics of scale, non-duplication of technical services and optimizing the benefits of learning from each other's experiences. Discussions have often focused on a regional approach to prosthetic services, and there has been considerable enthusiasm for this idea. There are different skill levels across regions and within countries, different institutional eligibility requirements for prostheses which affects affordability and can create potentially serious problems with regional communications and the timely transport of prosthesis sockets. Nonetheless, regional functions in prosthetic services could include elements such as prosthetic design, modular component production and service evaluation, Prosthesis assessment and measurement, production/assembly, fitting/trials and repair should probably best continue as local functions. Other more likely areas of regional cooperation concern the development of CBR educational materials, public relation materials concerning economic re-integration of ex-combatants, mine awareness strategies for remote, isolated areas and micro-savings models.

Contact Information

William P. Boyce
Director, Social Program Evaluation Group
Queen's University
Duncan McIntyre Hall
Kingston, Ontario, Canada K7L 3N6
Tel: (613) 533-2556
Fax: (613) 533-2556
E-mail: spgml@eduq.queenu.ca

JOURNAL: The Journal of Mine Action 4.2

WWII Ordnance Still Haunts Europe and the Asia-Pacific Rim

by Margaret Buid, MAIC

Explosives and mines from WWI and WWII still turn up on European and Asian construction sites, backyard gardens, beaches, wildlife preserves and former military training grounds. For most countries, these discoveries are not isolated incidents but are the result of hastily cleared ammunition dumps, training grounds, bombings and mine fields of these wars. In the United Kingdom, over 20 percent of the entire landmass has, at one time, been used for military training. This military training has resulted in uncrowned ordnance that dates from cannon and musket balls to modern weapons. Many of the older U.K. ranges can contain an entire historical sampling of ordnance. Clearance of these areas is a priority because it is being returned to private ownership and must be confirmed "free of ordnance" under current laws.

In Belgium and neighboring countries, 80 years after WWI, the Bomb Disposal Unit (BDU) of the Belgian Armed Forces finds about 10 WWI UXO every day. Bombs Away, a private hazardous material firm specializing in UXO removal in the Asia-Pacific Rim, uncovers WWII UXO daily. According to Manfred Schubert, chief of Hamburg, Germany's UXO department, Germany's has enough UXO littering its landscape to keep the department busy into the 21st Century. This UXO includes land grenades to 500 pound chemical long delay bombs. Even after the guns of these wars have fallen silent and hobbyists and antique dealers trade on their history,

<table>
<thead>
<tr>
<th>Country</th>
<th>Chemical Ordnance</th>
<th>Non-Chemical Ordnance</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number (%)</td>
<td>Number (%)</td>
<td>Number (%)</td>
</tr>
</tbody>
</table>

Chemical and Non-Chemical Ordnance Released by Allied and Axis Countries

Table 1
battles are still being fought. Ordnance contamination continues to plague these countries.

The high rate of failure among the ammunitions from 60-90 years ago is cited as one of the main reasons for such a high level of contamination. Some specialists estimate 30 percent of ammunitions never exploded. Sgt. Robert Hallam, a bomb disposal officer with the U.K. 33 Engineer Regiment (EOD), feels that much UXO is being removed from the U.K. because of the high bombardment level during WWII. He said, “You must also take into account the failure rate of this equipment. Nowadays, we expect 10 percent of submunitions to fail and that is with modern technology at work. The armed forces of that era simply did not have as much time to deal with misfires or blinds as they would have liked.”

Captain Vincent Maykens of the BDU of the Belgian Armed Forces (SEDEE-DOVO) feels “about 450 million pieces of explosive ordnance remain. Having 3,500 requests each year, we will stay busy for many years to come.” Michel Lambrechts, captain-commandant of the unit commented, “Every year we handle approximately 250 tons of ammunition from these wars. Within these 250 tons, some 20 tons are doubtful ammunitions which could be chemical shells from WWII.”

Paul Murray, president of Bombs Away said, “the Pacific Rim was the scene of fierce fighting during WWII. Millions of ordnance items with a 25 percent dud rate were extended from the Marshall Islands to Japan. Southeast Asia experienced even more war with ongoing conflict through the ’70s. With increased development of the Pacific Rim, these items are unearthed every day in excavation areas throughout the former battlesite.” U.S. military EOD teams deal with over 225 emergency UXO calls on Guam per year. Murray feels that even more ordnance is unearthed in excavation sites than are reported. It is then returned to the fill site out of ignorance or complacency. “On Kwajalein, the amount of UXO recovered from excavation sites were up 1,000 percent when those sites were monitored by UXO specialists,” he explained.

Saipan, a 46 square mile island near Guam, was the scene of one of the key battles of the pacific war. On June 15, 1944, U.S. forces staged amphibious landings along its coast against well-established Japanese defenses. By the time the battle officially ended on July 9, 1944, approximately 30,000 Japanese soldiers and civilians had been killed, including over 4,000 who died in the battle’s single largest Banzai charge. The United States suffered 16,525 casualties and 3,426 deaths. Saipan was also infamous for the mass suicide of over 10,000 Japanese civilians who threw themselves and their children off Barri cliff.

Today, the small island is still under the curse of the WWII battle. Northern Marianas emergency management officials believe there are still tons of UXO scattered across the small island today. Marpi, most of which is now forested, was the site of the last Japanese stronghold. It is so concentrated with UXOs that efforts to clean up the site have been hampered by the cost of the enormous undertaking. Beach combing a UXO while walking the shoreline is not uncommon. Road and construction projects are often delayed. The government occasionally hires a contractor to deal with the problem, but there is no organized ordnance disposal in current government plans. Officials feel the task would be too costly and may take many years. Adding to this dilemma is the bureaucratic red tape for undertaking such a job. The outlook for development in Saipan and the rest of the Northern Marianas Islands is not optimistic, as these weapons stay indeterminately volatile.

The History of Clearance: The History of Warfare

The history of clearance and military warfare may be part of the answer to why so much UXO remains littering these islands and Europe. Clearance of UXO and land mines has dramatically improved over the past 10 years. Previous to humanitarian involvement in demining and UXO removal, various military branches undertook these tasks. Before 1939, little organized clearance was taking place, and any items found were dealt with on an item-by-item basis.

From Caesar’s ancient forms of traps and spikes of the catapults to the fouguere, early attempts at landmines proved unreliable, time consuming and secondary to the main weapons and defense system. The U.S. Civil War precipitated the introduction to pressure operated mines, Brigadier General Gabriel Rains of the Confederate States Army had been experimenting with artillery shells to explode by trip wires or a false step. The use of these explosives began on a limited basis but not without controversy. General William Sherman of the Union Army stated that landmines “were not war, but murder.”

During WWI, AP mines were adapted from artillery shells, and the Germans developed the Minenwerfer fitted with a chemical fuse that detonated the device up to and beyond 48 hours. These UXO are still found today. By WWII, the mine had become effective in military uses and economically efficient by delaying, rechannelling and damaging armor and men while requiring less manpower and material to hold offensive and defensive positions. The effective use of mines during WWII encouraged their continued use and technical development as a standard weapon of war.

Clearing mines and UXO during both World Wars was a monumental undertaking, especially by countries that were devastated financially, economically and politically. The WWII Armistice Agreement of 1918, required the Germans to report their mine field plans and location of delayed action charges. During WWII and WWI, the Germans laid mines in a uniform pattern, and they were marked and recorded. Even so, as in the case of North Africa, only modest efforts were made to remove the mine fields laid by German Field Marshal Rommel.

During WWII, efforts were made to clear some mine fields. The U.S. 26th Engineer Regiment was ordered to clear the Sedjenane Valley in Tunisia. They removed 200,000 mines, but demining was very unpopular. “Virtually everyone objected. Why? The fields had no military value; they were only worked by Arabs. Removing mines was enormously difficult and dangerous, and the mines were in thick brush and scrub that would only be trod on by civilians and beasts. Almost everyday there were casualties. Seven officers and nineteen men were killed because someone thought it was a good idea to clear the Sedjenane,” reads an account from Mike Crofts’ The History of Landmines.

Clearing 20,000 mines in the Formia-Gaeta area north of Naples, Italy, resulted in 15 fatalities and 42,000 UXO were cleared mines throughout Europe and the former Soviet Union. Between eight and 17.5 percent of POW deminers were killed during 1945-1946. "The
POWs were given a strong incentive to ensure that all mines were removed; they were required to march shoulder to shoulder across any area that they cleared," writes Croll. In August 1949, the Geneva Convention eliminated the use of POWs for demining.

The beaches of Great Britain also proved difficult to clear, particularly when dealing with tides and shifting shorelines. Approximately 350,000 mines in 2,000 mine fields needed to be cleared. The last mined beach at Trimmingham was finally opened to the public in 1972. The beach mines proved to be devastating to civilians. One Dorset beach was declared safe and open to the public, but it proved fatal to five schoolboys who played with a mine that they found. There, beach clearance was carried out by the Royal Engineers and Ukrainian prisoners of war. Between 1945 and 1957, 155 deminers were killed and five injured.

Clearance of UXOs is still a problem and hampers development in many of the aforementioned areas. Headlines report old bombs turning up on construction sites, Japan's Ground Defense Forces recently defused a bomb that was dug up during construction of a shopping center. In Poznan, in 1996, 105 UXOs were discovered in various locations. In 1997, a 110-lb. shell believed to be from the Battle of Stalingrad was discovered on a Russian soccer field. In Germany, the ordnance department currently has 2,000 workers covering the entire country for UXO because of the frequency at which UXO are still unearsted.

Hamburg was especially devastated during World War II. In one three-day bombardment in July 1943, Allied forces unloaded 8,000 tons of bombs. Hamburg's stockpiled landscape reveals numerous bomb craters. Specialists watch the rim holes of these bomb craters because a well-trained eye can make out the discoloration that may reveal an unexploded bomb. Schubert, Hamburg's bomb disposal expert stated, "other parts of Germany have bigger headaches than we do." Oranienburg was the site of more than 20,000 dropped bombs as well as booby-trapped bombs with time fuses. Since 1983, three such bombs have self-destructed.

Mayhew reported, "There are ammunitions all over this country, but we don't have any mine fields left. We are dealing with all types- aircraft bomb, artillery shell, mortar bomb, rockets, sea mines, grenades and sometimes chemical weapons. In some countries, these WWI and WWII UXO problems are still an obstacle to development." In Libya, as late as 1980, 37 percent of the agricultural land was still unusable because of mines and ordnance from WWII.

Hamburg feels there is so much UXO littering the U.K. because it was "one large training ground. Most of the area we tend to work in are the more in-hospitable parts of the country. For obvious reasons they were chosen: 'Train hard, fight easy', and are places like Dartmoor, Yorkshire moors, Wales. Large bombs also appear in London or areas where they were dropped in abundance." The largest problem for U.K. EOD operators is that much of the area to be cleared is still unknown. Countries dealing with old ordnance also encounter this problem. In areas used for training, the boundaries were often not recorded. There were no written records of experimental training sites. Ordnance dumps and ordnance stores were often not known by many people. For instance, in the United Kingdom, only two to three men knew the location of these sites. Defensive positions were heavily mined and the majority of these were often hastily cleared. To search an old mine field to locate a few mines would be extremely expensive and time consuming. These mines and any enemy dropped bombs that turn up are dealt with on a case-by-case basis. Because of these scenarios, it is unlikely that old ordnance will be cleared in a time efficient manner. The missed landmines in mine fields remain, and the unexploded bombs still turn-up on the beaches.

It can be effectively argued that mines are used more prolifically in current wars than in previous wars. Perhaps, because of this factor and another variable, humanitarian clearance operations now deploy into war-torn areas almost immediately after the violence has ended. This practice is a new concept to modern warfare and an unusual concept falling under the umbrella of humanitarianism because it was previously a military responsibility. But recently, in Indonesia, mine and UXO clearance is a responsibility that has mixed results for the deminer, the civilian, socio-economic development, agricultural land and animals.

Further complicating the problem of mine clearance today is the way war has changed over the last 100 years. Earlier wars were fought with recognizable defensive and offensive positions. Battle lines were easy to follow. Current wars and skirmishes are fought often with no recognizable battle lines in what can be described as guerrilla warfare tactics of low technology but high intensity. As these conflicts progress, soldiers rotate, new soldiers lay new mines and locations are changed as quickly as the miners remember. Added to this problem is the evolution of mine warfare from defense into offense. Mines are not just placed as deterrents but to kill. Long rebel battles increased the use of government armies of placing mines around settlements, infrastructure, paths and roads. Mines are now placed around civilians—where people live, work, play and commute to town. Mines are no longer placed around recognizable "war zones."

Often, the best sources of information about mines are not the rebel and government armies who may or may not keep records of their location but the victims, the doctors and hospitals who treat the mine victims and the civilians of the local mine-infested villages.

Contact Information
Sgt. Robert Hallam
33 Engineer Regiment (EOD), Carver Barracks
Wimbish, Essex U.K. CB10 2YA

SEDEE DOVO
Quarterier Meendal
Langendalstrait 1
3054 Oud-Heverlee, Belgium
Tel: 32-16-395402
Fax: 32-16-395462
E-mail: ics-sede@ine.lie

Bombs Away
388 South Marine Drive #102-117
Tamuning, Guam, USA 96911
Tel/Fax: (671) 789-7887
E-mail: murray@tic.net
Website: http://www.bombsaway.net/core.htm

Additional Sources:
The History of Landmines by Mike Croll, 1998
Pen & Sword Books LTD
47 Church Street
Barnsley U.K. S70 2AS
Part II

Strategic Management for Mine Action Operations:

A Case for Government-Industry Partnering

by Dr. Alan Childress and Lieutenant Colonel Pete Owen

In March 2000, issue 4, 1, The Journal of Mine Action published the first part of this article.

Summary of Part I

Directed mainly at policy makers and leaders in mine-plagued nations and governments, the article argues for holistic mine action strategies, coordinated priorities and best management practices. The authors establish the need for nations to take charge of their mine action organizations and present strategic management methodology to implement self-determination concepts. They insist that humanitarian demining must start with the end in mind, an integrated and nationally prioritized requirements analysis of each of the mine action areas—mine awareness, mine field assessment and surveys, mine and UXO clearance, victim assistance and information management. They also suggest that nations should consider reconstruction and development programs as well as mine action when contemplating resource mobilization. With nationally prioritized programs and mine action centers managed by host nation-dedicated general managers, nations can expect to achieve optimum resource allocation and, most importantly, to look after their people as a first priority. The authors recommend that nations look to industry for dedicated, first-tier mine action program managers.

An Application

"The following depicts a fictitious country and a proposed demining scenario. Pineland is a multi-cultural nation with a long history of warfare. During WWII, AT mines were planted after several border disputes and, more recently, AP mines were used during guerrilla insurgencies. Pineland authorities have documentation on a few minefields, but mine casualties typically occur in areas where no mine records exist. In addition, much unexploded ordnance within the battle areas exists today. UNICEF reports consistent casualties of adults and children. Animals also suffer a huge number of casualties.

The eastern districts of Pineland, characterized by mountainous terrain and mineralized soil, are sewn with AP mines and large numbers of unexploded ordnance. The western districts, mainly desert terrain, in contrast, contain several types of mines from WWⅡ and a major border conflict. The central districts are infested with various types of AP mines and unexploded ordnance from guerrilla insurgencies. Several de-mining equipment vendors are pitching their products to district chiefs who have requested national funding for three types of mine detectors: remote control mine-detecting vehicles, mine detecting dogs and rifles. Two NGOs have started victim assistance and mine awareness programs in the central and western districts. Only recently has Pineland observed a government that is willing to tackle its mine-infestation problem on a national scale. The prime minister has requested help from the United Nations, World Bank (for development and reconstruction in mine-plagued regions), the United States, and others.

Setting the Strategy

The prime minister and his team should develop a vision of where he would like to see Pineland and its mine problem in five to seven years in concurrence with selecting an experienced, competent general manager to develop and lead his mine action program. In conjunction with the ongoing requirements analysis, he should study the social and economic ramifications of mines in the districts to help determine his priorities. While considering resource funding, for example, would mine dogs currently being contracted for the western district desert terrain be better employed in the eastern districts where mineralized soil and mountainous terrain make mine detectors less than fully effective? At this point, if the general manager is in place, he should help coordinate the policy assessment visit from the United States to assess Pineland’s mine problem and determine if he can provide the required personnel and resources to conduct mine actions. Following this visit, he should help the U.S. team coordinate a requirements determination site survey to determine the detailed material necessary to train the Pineland mine action trainers. He should also facilitate other donor visits to begin the donor coordination process.

Organizing the MAC

By establishing the National Mine Action Center (MAC) and regional MACs in the three districts, the general manager should start to coordinate the Level 1 survey actions inherent in developing the optimum resource mix for Pineland. The general manager should develop an organization that includes all mine action programs, in particular the donors, led by one of Pineland’s civilian ministers. While employing military deminers for the humanitarian demining mission is certainly reasonable, the international donor community, including the U.N. and World Bank, requires a civilian mine action leader. The organization chart (Figure 1) illustrates an organization that..."
should be acceptable to the donor community. The general manager should also document the processes in his organization, recalling that an organization chart is simply a snapshot in time and speaks little to how the organization accomplishes work. A pre-deployment site survey from the U.S. should arrive to fine tune and coordinate final preparation to train and equip the mine action personnel. This site survey should be followed within a few months by a contingent of U.S. mine action trainers with mine action equipment and supplies, which they will donate at the end of the training cycle.

Resourcing the MAC

Resourcing will provide funding and personnel to support the MAC and RMACs. Pineland’s mine action managers will be faced with eight types of demining heavy machinery, nine types of mine detectors, mine detecting dogs, several types of protective gear and ground penetrating radar with the choices growing. How do Pineland planners optimize their resource choices? Most of the decisions will flow from the plan accomplished while developing the Pineland mine action strategy up front. Based on Pineland’s aggregated and prioritized requirements analysis, the general manager should meet with all actual and potential donors, ideally at one meeting, to outline his requirements from demining equipment to organizational development consulting. The U.S. team will provide mine action equipment and supplies to get the program started and help maintain it. They will count on the general manager to coordinate discussions with other donors to match or complement U.S. donations.

Controlling Pineland Mine Actions

The general manager should coordinate and develop a data collection system to satisfy at least two sets of effectiveness measures. He needs measures of effectiveness to satisfy his superiors as well as data to satisfy the measures of effectiveness system maintained by the U.S. (or other donors) for their internal needs. He should satisfy safety standards by following UNMAS documentation, which establishes international safety standards. However, quality assurance philosophy should compel him to require the highest standards of training and safety practices from his subordinates.

Sustaining the Operation

Managing with the end in mind and the mine-safe nation his prime minister envisions, the general manager must marshal and efficiently deploy his at hands resources and potential resources to achieve that end state. Coordinated and established control systems will be critical to prevent fraud, waste and abuse of Pineland’s mine action resources. Lessons from other countries, such as Chad and Cambodia, should be studied. Pineland will need a plan to conserve and distribute mine action resources for the long term, realizing that they will most likely have continuous tugging from regional constituencies for short-term fixes.

Conclusions and Implications

While we suggest that strategic planning for mine action is distinct from management planning, in practice, management leaders generally combine the functions; thus, the strategy should be developed in the planning phase of the management cycle. We made the distinction to emphasize the importance of determining a country’s total mine action requirements before contemplating resources, which most countries tend not to do. Our strategic management logic also applies to countries that decide to support their mine action operations. Host nations should lead the requirements analysis phase and provide the general manager to lead their mine action centers. Host nations would do well to advertise their general management needs to international management consultants. The investment in an exceptional general manager, beholden only to the host nation government, should achieve significant returns on the investment in terms of humanitarian and resource allocation outcomes.

The implications of well-planned and host nation-managed mine action programs are considerable, including serving the host nation’s political, economic as well as mine action agendas. Arnold Sierra, a Foreign Service Officer currently engaged at the U.S. Department of State’s Humanitarian Demining Program, suggests that host nations consider an umbrella Development Action Center (DAC), which would integrate mine action and national development and reconstruction activities, supporting self-determination goals. A donor support methodology could be established within the DAC to help eliminate waste, synergize donor support and coordinate activities by the many different donor agencies involved. We note that, as a development agency, the World Bank supports member country programs that help lead to the eradication of poverty and to the promotion of sustained development. Its support of mine action is based upon the recognition that mine pollution is a significant obstacle to normal development activities. In this context, it shares with UNDP a perspective that views mine pollution as a development problem with long term consequences and, consequently, with long-term solutions that extend far beyond initial humanitarian concerns. Also important is that the World Bank shares responsibility with UNDP for convening donor groups in reconstruction situations and, thus, has a major role in resource mobilization and in setting long term agendas for international support for mine action and other needs. Similar to UNDP mine action policies, land mine clearance in World Bank-financed projects must be carried out under the auspices of civilian authorities, acting as an incentive for civilian-led national mine action committees in addition to setting policy for mine action centers.

Implications for continuous quality assurance, not necessarily quality control, are significant. While quality control at the demining unit level is necessary and important, quality assurance, systematically managed by the general manager, is equally important. Assuring that training and safety systems are well designed, properly taught and rigorously enforced is a function of the general manager, not off-hand delegated to subordinates. In addition, it is the responsibility of the general manager to establish measures of effectiveness for his mine action center, which tell his boss or the prime minister how the mine action program is progressing. Donors also will need data for their own agendas, which the general manager must accommodate if he expects continuous donor support. Having established its own measures of effectiveness, the U.S. will assist general managers in establishing data collection methods to meet their and other donors’ data needs. General managers need to realize the importance of regularly reporting mine action data to donors, helping ensure their long-term support.

Our research and experience indicates that worldwide mine action remains fragmented and un-coordinated. Holistic national approaches to their mine action problems would appear to help sustain stable and generous donor support. Regarding competition for demining resources, holistic approaches may tend to prioritize donor support to regions enduring the most human suffering, rather than those with the most political influence.

Contact Information

Dr. Alan Childress
U.S. CENTCOM KC J-5 Demining
7115 South Boundary Blvd.
MacDill AFB, Florida 33621
Tel: (813) 828-0692
E-mail: childdra@centcom.mil

Biography

Lieutenant Colonel Pete Owen is the Program Manager for U.S. Centcom’s Humanitarian Demining Program. He is responsible for all U.S. mine action operations in the Middle East and African nations that comprise the Central Command’s area of responsibility. Much of this article is based on lessons learned while he was establishing and managing the program.

Dr. Alan Childress, a management consultant for Booz Allen & Hamilton, is currently engaged as the Central Command’s humanitarian demining Country Manager for Ethiopia, Eritrea and Djibouti. He specialized in international management while earning his business administration doctorate at Nova Southeastern University.

The authors wish to acknowledge the contributions of John Johnson, Country Manager U.S. Central Command Humanitarian Demining Program. “We benefit daily from his extensive mine action knowledge and his compassion for people affected by the worldwide landmine affliction.”
HALO in Cambodia operates the demining system of One-Man One Lane (OMOL). Traditional mine clearance has operated with three individuals performing detection, probing and tripod wire detection and deactivation. With the use of improved German mine detectors, HALO has safely combined all tasks to a single man, doubling productivity and halving personnel costs.

Established in 1988, The HALO Trust (Hazardous Life-Support Organization) is a non-political, non-religious British registered charity (No. 1001183) that specializes in removing landmines and UXO. HALO has 3,000 mine cleaners working in six countries. HALO’s operations are grouped under Asia, Africa and the Caucasus. "HALO is not distracted by involvement in campaigns and conferences. We have a simple statement: Getting mines out of the ground, now," stated Guy Willoughby, HALO Director.

HALO manages its own research and development and also works with scientific institutions. HALO has also trialed Ground Penetrating Radar, dog teams and mechanical equipment. The most successful rate of HALO’s R&D has been in the adaptation of existing agricultural and civil engineering plants. HALO has modified the standard European tractor mounted hedge and verge cutter and deployed 10 units to cut vegetation growth in Cambodia, Africa and the Caucasus, which gives safer access for deminers. Twenty medium-wheeled loaders have been adapted and armored for clearing rubble. Area-reduction vehicles have been designed to drive into suspect areas and define the "line" of laid mines. This advancement allows for a better use of clearance time with deminers deployed closer to the actual mines.

HALO’s administrative staff is small. Emphasis is placed on developing local management. They train their managers and deminers as well as mechanics, medics, their staff equipment technicians and drivers. Mine awareness trainers are also deployed on a limited basis, its mine clearance teams use a variety of equipment with each deminer wearing protective clothing and face visor and outfitted with the latest state of the art metal detector. Local salary costs for deminers and equipment costs are the largest part of HALO’s budget. HALO is funded by a number of private donors, governments and NGOs.

HALO’s Programs

Afghanistan

Heavily mined during its 10-year occupation, all defensive forces laid mines to protect their main supply routes, particularly the road north from Kabul to the old soviet border. HALO estimates 640,000 mines have been laid since 1979. HALO started its program in 1988, and now employs over 1,300 deminers, which are split into two 32 manual teams, 10 mechanical teams and six survey and UXO teams. The most common AP mines are the Russian PMM-2 with the distinctive black cross and the PMN. They account for the majority of civilian deaths. Front loaders, cranes and bulldozers have been armored to deal with the mines and UXO amid the rubble of the war torn villages.

Cambodia

During the 10-year Vietnamese occupation, both forces laid landmines. Mine laying increased during 1989-1991, as the Cambodian government used mines as sentinels. The opposition, to prevent the government from extending its areas of control, also laid mines. Highly mined areas include the northwestern provinces bordering Thailand, which had also been the target of mines. HALO launched a 500-man operation to clean mines by June 2000.

Central America

HALO has focused on the minefields of Central America. Minefields have been detected in El Salvador, Guatemala and Honduras. The most common AP mines are the Russian PMM-2 and the P7M. They account for the majority of civilian deaths. Front loaders, cranes and bulldozers have been armored to deal with the mines and UXO amid the rubble of the war torn villages.

Mozambique

This program encompasses all four northern provinces of Zambézia, Nampula, Niassa and Cabo Delgado. The government used AP mines to defend provincial and district towns, airstrips, key bridges, power supplies and military posts. RENAMO, Mozambican National Resistance, laid anti-vehicle mines to cut the roads connecting towns and markets. In the Zambézia and Niassa provinces, HALO has cleared the majority of the mine fields. The provinces of Nampula and Cabo Delgado will require another three years of concentrated clearance.

Sudan/Somaliand

The Sudan is the biggest country in Africa. Success by the SPLA in 1997 resulted in the front line moving away from the Uganda/Zeire borders. As a result, over 50,000 refugees moved into the Kaya-Yei corridor. They found their villages mined and their fields littered with UXO. The center of Kaya had an ammunition dump. Anti-vehicle mines had been buried in the roads, and until these were cleared, rehabilitation could not start. Somaliland is extensively mined. HALO has surveyed the city of Burao in response to a request by the government of Somaliland. HALO has limited private funding for small programs in Southern Sudan and Somaliland, and both countries require major donor support.

The Caucasus

Chechnya

The Russian army has relied heavily on extensive bombardments in both the current and previous war with the Chechen forces. Air-dropped AP mines and wide minefields around military positions held the small country hostage. In 1997, HALO surveyed 286 mined areas and was demining these areas with over 150 Chechens, but this and other programs had to be abandoned in December 1999, because of the fighting.

Abkhazia

Mines are left over from the secessionist war with Georgia, which was characterized by front line moving back and forth along the Black Sea Coast. Mines were laid in the flat fertile valleys to augment the natural obstacles of the rivers. These mines have been buried to over 300,000 displaced people, homes, agricultural land, orchards and industrial land deserted. HALO deploys integrated manual and mechanical clearance teams, maintains a central mine database and a mobile bomb disposal capacity assists reconstruction.

In April 2000, The HALO Trust received 55 surplus Army vehicles from the British Ministry of Defense. This latest donation included Land Rovers, lorries and heavy-duty bulldozers with reinforced buckets that can scoop debris and mines safely. The undersides and cabs of the vehicles will be specially reinforced with armor plating to protect the driver. Some of the heavier equipment will go to Africa where plastic Czech anti-tank mines, which cannot be detected manually, must be detonated by scraping away at gravel road surfaces until they detonate.

Contact Information

The HALO Trust
10 Stoney’s Gate
London SW1P 3AY
Tel: +44 20 7222 7177
Fax: +44 20 7222 7178
Scotland Office
Tel: +44 1848 331100
Fax: +44 1848 331122
Mines Advisory Group

The Mines Advisory Group (MAG), U.K. Registered Charity No.1020441, started in 1992. MAG’s programs integrate mine/UXO survey, demarcation and clearance with awareness-raising activities to reduce landmine risks to affected populations. MAG’s integrated approach prides itself on working with conflict-affected communities to identify and address their most pressing needs.

Through close liaison with the communities, MAG can focus its work on the priority areas that the communities have identified. By training and employing people from mine-affected countries, MAG is transferring technical and management skills to local citizens who can sustain this work.

Mine Action Teams concentrate on tackling urgent tasks, such as providing safe access to water, paths and land for housing, farming and the development of social services. Where applicable, these teams will also survey and mark wider areas of dangerous ground for clearance. The community liaison staff undertakes information gathering and community awareness work; a medic and driver support them. MAG is creating, through its mine action teams, greater flexibility, more multi-skilling and more responsiveness to the broad impact of landmines. MAG will also propose other clearance aids, such as dogs and machines, vegetation and brush cutters and mini-fail machines, in order to better serve the people and their communities.

Current Programs

Kosovo
MAG entered Kosovo in June 1999, initially deploying a Kmer Mine Action Team while training some 60 Kosovars in mine action tasks. MAG is UNMUC’s lead agency in the Mitrovica region. In 2000, MAG is fielding three teams and the ‘minecat’ 230 mini-fail. MAG plans to add further appropriate mechanical assistance. In addition to its own mine awareness program, MAG is conducting a Child to Child awareness program funded by UNICEF.

Northern Iraq
Since the program began in 1992, MAG has worked in Saravane Province, southern LAO PDR. Most of the work involves UXO contamination resulting from the bombardment of the Ho Chi Minh Trail. In 2000, MAG is handing over control of the majority of its national staff to UXO LAO.

Angola
The Moçâmedes Province program had been running since 1994. At its peak, it employed 15 mine clearance, mine-awareness and mine-action teams, consisting of 325 local staff in three locations. Instability and fighting led to the program being suspended in mid-1998. Since then, MAG has fielded four active Mine Action Teams in Cunene Province and plans to restart the program in Luama, Moçâmedes Province, in the second half of 2000. There are currently two operational mine action teams to respond to the immediate needs of mine-affected communities in the region.

MAG’s work provides benefits to its staff and the local community in addition to the removal of mines and UXO from their land. The wages that the staff are working for MAG will usually go to sustain an extended family. This money makes the economic effects of the broader community.

Southern Sudan
In partnership with OSIL and several development NGOs, MAG undertook a six-week capacity building initiative in 1998, and is planning follow up in 2000, with further capacity building and training in management, technical and data gathering/mine awareness disciplines.

Vietnam
MAG’s project is fielding one demining team of 25 civilian deminers. The initial project site is 120 hectares around a heavily mine- and ordnance-contaminated former fire-base in Qio Linh district, Quang Tri province. Phase two of the project, later in 2000, will see the introduction of mechanical means to assist with the clearance.

Cambodia
MAG’s program, which began in 1992, now employs nearly 400 Cambodian civilians, including 48 amputees and 46 women deminers. MAG’s effective information gathering network collated 70 percent of the accidents reported to the national Mine Incident Database. In 1998, a new operation began in Kompong Speu Province where six mine action teams were deployed. Since the onset, improved political stability in 1999 has increased the return of refugees and IDPs into former KS areas. MAG has responded to emergencies in Samlot District near Pailin, and in Kompong Speu province to minimize risk of accident. MAG fields data gathering community liaison and mine awareness teams in seven provinces, and Mine Action Teams in five. 2000 sees four teams beginning operations in Preah Vihear province.

Namibia
In 1998, MAG conducted a preliminary assessment and general survey of the UXO problem facing the population of northern Namibia. MAG is hoping to help develop a program to tackle this problem.

West Bank
MAG is conducting a short assessment and clearance operation in a mined area near Bethlehem.

Azerbaijan
A MAG “Training and Supervisory Team” is conducting an eight-month training program with UNODPs for the local demining capacity. Relief Azerbaijan. Forty-five deminers are being trained to tackle the mine and UXO problems, initially in the Fuzuli region.

In April 2000, the British Ministry of Defense donated 11 vehicles to MAG for use in its mine action projects.

Ms. Sengmnanee
EOD Technician, Lao PDR.

Ms. Sengmnanee was the first female technician in MAG’s new program in Saravane Province, Lao PDR. She is from the district of Ta Oi, on the former Ho Chi Minh Trail, where MAG opened an operations base in 1998.

“The people of Ta Oi are very poor and they need more land to farm. A lot of land contains unexploded ordnance that remains from the bombing of the Ho Chi Minh Trail. The people are afraid when they are winding in the rice fields. I want to destroy all the UXO in this district to help my people live safely.”
Norwegian People's Aid (NPA) is one of Norway's leading non-governmental organizations. Originating in 1939 as a result of the Norwegian labor movement, NPA quickly assumed an active role in Norway, performing rescue, first aid and public health services, assisting the elderly and disabled, offering services during natural disasters and operating reception centers for asylum seekers.

NPA soon became an international figure and expanded its services to include agricultural, environmental, healthcare and psycho-social and human rights activities. NPA also offers emergency assistance, shelters, conflict prevention and resolution and, lastly, mine-clearance and mine-awareness programs. By extending this spectrum of services, NPA has secured its position as a vital force on the international humanitarian aid level and is presently involved in 400 projects in 30 countries. NPA also advocates that cooperation only enhances a humanitarian organization's fight against inhumane behavior. It works closely with the Norwegian Ministry of Foreign Affairs and is a member of Eurostep and SOLIDAR.

Although NPA accomplishes much from a national perspective, its mine clearance and mine awareness programs highlight its dedication to ridding the world of landmines and improving safety for all human beings. It has established a tradition of assisting African countries in their liberation movements, supporting each individual's right to freedom and justice, and has contributed to rebuilding and development efforts in recently liberated countries. NPA categorizes its efforts in Africa into two divisions: short-term emergency relief and long-term development cooperation, with Southern Africa and the Horn of Africa comprising its two prime geographical areas of concern.

Landmine Activities
NPA's landmine projects have taken it to Angola where the organization focused on battle area clearance, mine clearance, survey and GIS database and mine awareness. Its expertise has landed it projects in Angola and Bosnia-Herzegovina, Cambodia, Kosovo, Laos, Mozambique, Northern Iraq, Kurdistan and the Western Sahara. In Bosnia-Herzegovina, NPA surveyed the land, established mine clearance and mine awareness programs and deployed 150 deminers and five mine detection dog teams. To assist the refugees in Cambodia, NPA offered local community development programs and supplied technical guidance to the Cambodian Mine Action Center (CMAC). NPA also incorporates indigenous populations in its projects to promote cordial working relationships between the countries and NPA and to establish a competent demining team to further mine clearance efforts once NPA is no longer a presence in the country. In Kosovo, NPA trained 100 local deminers and dog teams to clear the affected land. As mine awareness comprises a significant portion of the landmine problem, NPA created mine awareness programs for returning refugees in the Western Sahara and trained approximately 30,000 people in refugee camps.

To optimize its efforts, NPA also focuses on the research and development of mine clearance technology, as there is always a need to improve safety, speed and cost concerns for mine detection and removal methods. NPA also emphasizes the need to approach all new technological advancements with a degree of caution, as there is never an easy solution to a problem this severe.

Contact Information
Norwegian People's Aid
P.O. Box 8844
Youngstorget
0282 Oslo, Norway
Tel: +47 22 03 77 00
Fax: +47 22 20 08 70
E-mail: npadn@npaid.org
Int.dep@npaid.org

MgM was created as a service provider to other NGOs that plan reconstruction of infrastructures post-war scenarios. Please see MG.

Donations and Support
Without the monetary assistance from various concerned personnel and organizations, MgM could not function at its current level. The German government and the Netherlands' government helped to fund MgM's Angola project. MgM has formed partnerships with a variety of governments and companies to offer the most cost-efficient and clearance effective services to mine-affected countries. MgM works in cooperation with deminers to manually clear the land. The MaM system is followed by a MaD system, which consists of mine-detecting dogs. The last phase of MgM's layered technique is the QaM, an armored grader that scrubs the ground surface of cleared areas for passive quality control. MgM favors a layered approach to demining to guarantee the safety of its staff and people returning to their homes.

MgM Projects and Activities
MgM focuses its operations on measuring the social impact toward mine clearance and the rehabilitation of infrastructures to permit the safe return of displaced persons. Its activities include demining work in Angola and Namibia. German Ambassador to Angola Helmut van Edig requested MgM's assistance to reconstruct numerous mined roadways, bridges and community areas in the Bengo Province of Angola to facilitate Angolan refugees' return to their country. Because of MgM and other humanitarian organizations' efforts, 50,000 displaced persons returned to Angola after seven years spent in refugee camps.

Presently, MgM is in the planning stages of preparing survey operations in Africa and Central America and urges people to remember "with all (their) pride and joy about these hybrid and low-tech products and projects, it must be kept in mind that the purpose of both are to clear landmines and UXOs."
profiles

The Mechem division of Denel (Pty) Ltd, South Africa, has a history going back to the late 1960s, when it was a unit of the South African Council for Scientific and Industrial Research. Specializing in landmine detection, demining and UXO disposal, Mechem also offers contract research and development, well-equipped laboratories and an explosive test range, which is used for the development and evaluation of equipment and augments workshops.

Mechem has designed mine-protected vehicles, including the Casspir and Mamba, which are used for demining, and provided safe and reliable transport for operations. Recent developments include add-on armor systems against SSF mines and modifications to the Schiebel VAMIDS metal detector systems, which enables it to detect and mark the position of mines with minimal metal content.

Explosive Detection Systems
Unlike metal detection systems, the Mechem Explosive and Drug Detection System (MEDDS) combines the mechanical concentration of explosive vapors with the acute sense of smell of trained dogs. By using a team of dogs to check MEDDS sample tubes, it is possible to predict the presence of explosives in the sectors of a mine field. MEDDS is used to indicate the presence or absence of vapor, which can emanate from stray ammo, a weapons cache, UXO or a mine.

Mechem has developed a non-magnetic triller, or pushed trolley, with a Schiebel VAMIDS array coupled to a computer operated marking system, which paints on the spots where mines are found. The system, mounted on a Casspir, has completed field trials by auditioning cleared mine fields in Mozambique.

The International Counter-mine and Canine Training Institute (ICCTI)
Funded by donors, this school provides training in all aspects of detection and clearance. The intention is to enable mine-infested countries to become self-sufficient in demining. Training is offered through a variety of standardized courses. Specific courses can also be designed to meet client requirements, which may include UXO and terror bomb disposal techniques. Standard courses include the following:

Basic Demining Course:
Mine Awareness
First Aid
Metaldetection
Detection with a prodder
International mine and munitions identification
Explosive characteristics
Driver training
Communications

Advanced Demining Course:
Vapor detection-MEDDS sampling
Rendering safe of mines and UXO
MEDDS dog and handler training
Search dog and handler training
Communications
Operational medical care
Supervision
Quality assurance
Logistic support procedures
Vehicle and mechanical maintenance

Mine Surveys
Permanent staff is available for surveying and gathering information about known or suspected mine fields. At the conclusion of an initial survey, Mechem can report the estimated extent of the problem and offer a selection of solutions adapted to the local terrain of the mine field.

Contact Information
Mechem
P.O. Box 912454
Silverton 0127
South Africa
Tel: +27 12 803 7290
Fax: +27 12 803 7189
E-mail: ecm@mechem.denel.co.za

An appealing to a broad range of customers from governments to commercial demining companies, Security Devices offers high quality, economic demining products and has established its presence in the demining community.

Andy Smith, an international specialist in humanitarian demining, designs the majority of the equipment Security Devices markets.

MK3 Personal Protective Equipment
Presently, Security Devices offers an all-inclusive set of personal protective equipment. This set includes an MK3 demining apron, a 5mm visor and fittings, knee-shin pads and a carry bag to transport these items. Specialists at Security Devices have designed a weatherproof, padded, washable, lightweight carry bag to reduce the bulkiness and weight strain that personal protective equipment often places on deminers.

MK3 Demining Apron
The MK3 demining apron does not conform to traditional body armor. Rather than matching previous close-fitting aprons, the designers adapted the MK1 apron to hang comfortably from the shoulders, forming a blast-proof wall between the deminer and the mine. Aware of the environmental conditions under which deminers often work, the specialists designed the apron to support air circulation, which cools the deminers as they work. In addition, the specialists at Security Devices overlapped the apron’s collar with the 5mm visor also supplied in the kit. This modification protects deminers if they detonate a mine while looking down as they work. This apron has been involved in a minimum of 12 prodding incidents, establishing its worth as an effective means of protection.

5mm Visor
The 5mm visor, composed of polycarbonate, is equipped with a head-frame made from ballistic Aramid and covered with water proof nylon. These specifications improve the durability of the visor and the protection it offers, increasing its growing popularity among deminers.

Knee-Shin Pads
To improve the comfort factor of demining, designers included knee-shin pads in the personal protective equipment kit. Although the pads do not offer significant protection against exploding ordnance, deminers have reported that the pads are beneficial when they are forced to kneel on damp or rough ground to work. The pads are made of rubber and designed to be flexible to match a deminer’s physical movement.

Contact Information
P.O. Box 841 253
Amby, Harare, Zimbabwe, Africa
Tel: +263 4 487064/5
Fax: +263 4 486885
E-mail: secdev@samara.co.zw

Security Devices

Manual Demining Hand Tools
Andy Smith, aware of the injuries caused by exploding mines to exposed hands, created a range of hand tools to reduce this risk. These tools include the "Braveheart" excavator, the "pick-prod," the "mini-spade," the "MIT profile" probe, the "root cutter," the mine-grab and the demining brush, markers, shears and tool set. The tools underwent multiple tests to ensure their safety. Deminers can purchase the complete set of tools from Security Devices as a toolbag. In addition to the previously mentioned tools, the test suite supplies a wirefeeder, maintenance tools and a saw.

Development and Testing
Security Devices firmly believes in the integrity of each of its products. Therefore, the organization uses strictly quality materials, including polycarbonate, Aramid and Kevlar. Its test facility is equipped with a fragmentation firing rig that fulfills NATO standards. Prior to each product’s release to the market, Smith subjects his designs to rigorous testing, measuring the protective value the product provides under real conditions. In addition to their marketed products, Security Devices will adapt equipment to meet specific requirements upon request, understanding deminers’ individual needs.

Security Devices

The Journal of Mine Action 4.2
GERBERA Gmbh

Comprised of a staff comprehensively trained in international operations involving project management and mine clearance, GERBERA Gmbh strives to offer a range of services to mine-affected countries. These services include the following:

- Mapping and analyzing mine-contaminated areas;
- Preparing, implementing and inspecting "tendered documents";
- Providing emergency assistance against mine hazards;
- Detecting, neutralizing and removing mines;
- Performing quality assurance tests; and
- Training and supervising local deminers and EOD workers.

Mine Awareness

GERBERA emphasizes the need to increase mine awareness programs tailored to the children and parents inhabiting mine-affected areas, as education is a primary means of preventing future casualties. The organization has offered classes in many of its project countries in an attempt to generate mine awareness knowledge among the most severely affected populations.

Mine Clearance Projects

In 1996 and 1997, GERBERA's projects took its deminers to Angola where demining specialists performed quality assurance tests on approximately 4,800 km of primary roadways. During a U.N. Peacekeeping Mission in Angola (UNAVEM-III), GERBERA experts worked as regional mines officers and supervisors for the Angolan Demining Brigades and as U.N. Quality Controllers for the demining and UXO clearance efforts.

Deminers for GERBERA endure strenuous, tedious work. Often, they confront UXO dating from resolved wars. In Laos, deminers located a variety of UXO, some of which was dated as far back as the 1940s. Consequently, GERBERA supplies its deminers with advanced technology to succeed in its mine clearance and awareness missions.

In addition to mine clearance efforts, GERBERA also trains local deminers to continue demining efforts. In Vietnam, GERBERA instructed locals to search and clear mine-affected areas in order to quicken the resettlement of two villages.

Equipment

GERBERA stresses the value of innovative technology in demining efforts. In an attempt to restore the national infrastructure in Croatia, GERBERA deminers combined machinery, manual demining techniques and mine detecting dogs to clear heavily mined areas. GERBERA also utilizes computer software to assist in underwater detection. In addition to detection, the software is also able to measure the extent of pollution and the related dangers prior to GERBERA's initial demining efforts.

Contact Information

Dipl. Rer. Pol. Lutz Vogt
Dipl. ling. Jorg Lutz
GERBERA
Geellschaft zur Erfassung und Vereinigung von Alttanen mbH
Karl-Liebknecht Str. 18
D-15711 Köpenick-Wusterhausen
Anliegerpartner
Tel: 033-75-29-07-21
Fax: 033-75-20-15-80
E-mail: GERBERA@T-online.de

History of INTEROS

INTEROS is an Italian based organization founded in 1992, by a group of individuals who had already dedicated years of aid and understanding to victims in developing countries. INTEROS is a non-profit, independent organization that works to support public and private institutions that share its perspective in aiding the victims of humanitarian tragedies across the world.

It is also a member of the European Coordination VOICE (Voluntary Organizations In Cooperation in Emergencies) and a member of the project SOLIDEA that is a part of the Italian Trade Unions special interrelations. The organization's primary goals focus on the appropriate skills needed to help the victims of landmine and other disasters. The group is based upon solidarity and "professionalism" so that it can work quickly and efficiently to cover as much ground as possible. Since 1992, INTEROS has been recognized by the Italian Ministry of Foreign Affairs and by the European Commission. Both of these organizations, along with several other humanitarian organizations, support the gallant efforts of these individuals.

Primary Goals:

The main goal of INTEROS is to immediately respond to all types of disasters and to bring aid to the victims of armed conflict, drought, famine and landmine explosions. Through its fight to save more lives, INTEROS also works to restore the normalcy of everyday life before these conflicts arise. INTEROS believes the most efficient way to enlist outside help is to tell the public and let them contribute to the local associations as well as the overall cause. One aspect that INTEROS prides itself on is following a strict non-sexual, racial or ethnic discrimination policy. All of the people involved work hard to spread the word of these disasters and enlist as much humanitarian aid as possible.

Resources:

INTEROS is an organization supported by several different pillars of contributors, such as doctors, nurses, logisticians, administrators, educators and technicians in engineering, sanitation, human settlement, agriculture, electromechanics and explosive devices. These pillars of INTEROS work together to attend to the areas devastated by tragedy and left in despair. Financially, INTEROS is not only supported by its own members' contributions and various individuals but it has also benefited from the help of several different NGOs and other organizations, including:

- European Union—ECHO, DG IA, DG VIII
- Italian Ministry of Foreign Affairs
- UNHCR
- UNICEF
- USAID
- Italian Episcopal Conference (CEI)
- Italian Caritas
- Trade Unions

Contact Information

INTEROS
VIA Goito, 39 - 00185 Roma
Tel: (+39-6) 44.66.710
Fax: (+39-6) 44.69.290
E-mail: interos@tin.it
Sankt Barbara

History: Stiftung Sankt Barbara is a private foundation with its central headquarters in Munster, Germany. The organization was established in 1995, but its first mission was organized in October 1996. Sankt Barbara is a non-profit organization whose purpose is to protect the native people of different countries through knowledge of landmines, accurate demining and rehabilitation.

The organization is based upon the guidance of a board of directors, which handles the foundation’s business and capital, and a board of trustees, which advises the board of directors and gives the foundation a set of business regulations to follow. The only other authority over Sankt Barbara is that of the Luneburg government, which requires the directors to keep them informed of projects and problems as well as to turn in a yearly balance with a financial outline of the money spent. This practice ensures that every penny is saved for the demining and rehabilitation process for countries in need. Throughout the course of its ascension in the demining field, Sankt Barbara has worked hard and trained hundreds of new deminers in order to clearly as much land as possible, as quickly as possible. Its purpose is to make new and improved advancements in the medical care of war victims, orphans and those who were disabled due to circumstances beyond their control as well as working on economic issues within the developing country.

Mission: The mission of the organization is to remove as many landmines as possible so that there are fewer victims. Coinciding with its goal of demining, it also focuses on assistance for native people and their lands in the hopes that the people can resume their normal lives. It is also involved with the medical care and rehabilitation of mine victims. The people of Stiftung Sankt Barbara work together to ensure that adequate help and attention is focused on the victims’ integration back into society and education on how to care for and handle the prostheses.

Current Projects: There are several locations in which Stiftung Sankt Barbara is working, but Angola and Somalia are its two major areas of concern. In 1997, it began the quest to remove landmines in Angola. It is currently stationed in the Huila Province of Angola at Hoque where it is demining a large mine field on the side of a hill filled with old Russian mines. This crusade is funded by the Italian Embassy with a staff of 30. Another chief site in Angola is Camp Xangongo, a logistic base and the 12, located in the Cuneo province and funded by a coalition of German companies. At this site, it is working to demine agricultural lands for the surrounding communities. They, too, are plagued by old Russian mines. Most of the landmines were produced in China, Romania or Russia, but some were brought from Germany, South Africa and the United States.

Contact Information
Stiftung Sankt Barbara’s Foundation
Dollendorfer Strasse 4
53639 Konigswinter/Oberpleis
Tel: 02244/9127-44
Fax: 02244/9127-45
E-mail: info@stiftung-sankt-barbara.de

UXB International, Inc.

The mission of UXB is to provide a world-class, comprehensive program of demining-ordnance and explosive waste (D-OEW) remediation-engineering services designed to meet the needs of a diverse client base in a safe, effective, cost efficient manner while complying with increasingly stringent regulatory requirements. UXB is committed to providing quality programs and services using an integrated systems approach, utilizing state-of-the-art science technologies and field-proven methodologies by well-qualified and highly trained personnel under the supervision of a streamlined, responsive, customer focused management team.

As a major participant in the global effort to remove landmines, UXB is an international leader in safe and efficient clearing of landmines and UXO. Its landmine clearance efforts have taken them all over the world from the jungles of Vietnam to the war ravaged communities of Bosnia-Herzegovina. UXO operations have been even more widespread.

UXB places the highest importance on working side-by-side with the host nations to educate citizens about the dangers and complexities of working in mined areas. UXO augment, expands and consolidates the experience and knowledge of former combatants, military personnel and other local experts so that the required work and clearance standards of the multi-national workforce can be safely and efficiently met and maintained. The aim of UXB is to leave the affected communities with an indigenous capability and capacity to ensure long-term success neutralizing the landmine threat. It has developed specialized training courses that utilize classroom lectures, technical manuals, hands-on reinforcement training, field exercises and formal testing.

Current Projects
Several current projects, most notably those on the Kaho’olawe Island Reserve, Hawaii; Bosnia-Herzegovina; and many others throughout the U.S., have been models of community involvement and participation. UXB, working with Peace Trees Vietnam and others, cleared land for re-use where the Dannam Parry Landmines Educational Center was built in Quang Tri Province, Vietnam.

Demining Capabilities
UXB has mobilized and deployed multi-skilled and equipped teams tailored for specific missions and tasks, such as conducting landmine surveys, conducting landmine and UXO clearance operations, developing and conducting site-specific landmine awareness/avoidance training, establishing landmine action headquarters, establishing a landmine database, providing explosives storage plans and facilities, establishing a local demining capability and introducing new demining technologies.

UXO Capabilities
Demining teams need additional technical capabilities to safely defeat UXO. For more than 14 years, UXB has successfully located and removed/eliminated UXO at depths well in excess of the United Nations 200 millimeter clearance standard for landmines. UXB has the capabilities to conduct wide area assessments tied to geographical mapping, integrate surveys into databases, including geographic information systems (GIS), conduct UXO clearance operations on land and underwater and employ risk assessment and footprint reduction.

Contact Information
UXB International, Inc.
21641 Beaumeade Circle
Suite 301
Ashburn, Virginia 20147-6002
Tel: 703-724-9600
Fax: 703-724-3526
E-mail: Sales@uxb.com
Website: http://www.uxb.com
Many countries utilize Geomines’ deminers, as they possess the technology and skill to neutralize UXO in all situations. Geomines’ expertise extends to these areas: • Atmospheric and Waterborne Mine Clearance Operations, • Munitions Retrogrades Demolition, • Toxic Munitions Clearance Operations, • Rock Blasting Operations, and • Pyrotechnic Safety Regulations. Confident of its technical abilities, Geomines offers its services regardless of the environment. It has successfully dismantled UXO on all-terrain surfaces, such as urban regions, jungles and deserts, in addition to aquatic areas, such as seas, rivers and swamps. This ability accentuates its appeal and emphasizes its uniqueness, as many mine clearance organizations focus largely on landmines.

EOD and IEDD Missions

Primarily, Geomines contends with Explosive Ordnance Disposal (EOD) Missions and Improvised Explosive Device Disposal (IEED) Missions, both of which consist of the detection, neutralization and/or removal of UXO. These munitions are typical manifestations resulting from two situations: war and/or terrorist (guerilla) warfare. While warring parties might target a specific sector, their actions affect the total population of a given area, rendering the entire area unsafe. As it is impossible to guarantee all ordnance will explode during combat, ordnance planted under war or terrorist pretenses possess the potential to remain dormant and invisible during conflict, patiently waiting for an innocent civilian to unsuspectingly trigger them.

Regardless of the individual, exploding ordnance causes indescribable injury to its victim and restricts a community’s free movement; consequently, Geomines enters the picture, hoping to serve as an effective vehicle of assistance. Geomines operates “to preserve the safety of civilian populations and to protect and ensure free circulation within the most sensitive zones, such as: [sic] airports, ports, railway stations, communication centers.” Geomines attempts to neutralize mine-affected areas to support and promote the uninhibited movement of community members.

Methodology and Training

Geomines firmly believes in applying a methodology based on performance, cost and lead times to its demining efforts to ensure civilian and team members’ safety. To successfully demine a specified area, the ensuing measures must be organized and methodical, protecting all involved people. Geomines initiates each individual demining mission with an active management selecting a qualified team. Geomines demands each team member be a motivated, competent individual alert of the safety hazards and environmental constraints involved in demining. They also require each member’s absolute compliance with its regulations in an effort to reduce the risks involved.

To perform the EOD and IED missions, Geomines insists each crew member attend and complete training courses tailored to not only their particular mine clearance skill but also to fundamental demining knowledge and interpersonal relationship skills. Subsequently, all Geomines’ personnel are trained to • Take preventive measures in the case of discovery of ordnance; • Manage/control a crisis situation; • Intervene on all conventional ordnance; and • Intervene in actions against IED.

Additionally, in an attempt to further the team members’ demining education, experienced instructors conduct the next phase of the training. These sessions concentrate on the level of security associated with each mission and the specific methods and equipment the future deminers will soon employ in the field. The instructors incorporate accepted pedagogical techniques with practical examples to educate the team members of the dangers involved in demining and methods to avoid these risks.

EOD Training

Geomines structured the EOD training around several key features. Its first teaching objective focuses on the prevention and the appropriate reconnaissance course of action when handling ordnance. Next, the trainers instruct the future teams on modern ordnance and ammunition, its movement, and disposal, which is followed by a course on underwater reconnaissance and interventions on ordnance. The last covered topic outlines the handling of pyrotechnic devices and the necessary safety precautions involved in this type of mission.

IED Training

This training emphasizes the threat of terrorism more than the act of war (IED ordnance typically results from terrorist actions) and the degree of sensitivity required to successfully detect, neutralize and dispose of all IED. Team members are instructed in areas of surveillance and protection of highly trafficked zones. Lastly, team members are instructed in IED intervention.

Geomines requires all personnel to repeatedly refresh their courses to guarantee its personnel are knowledgeable of current technology and methods to successfully demine affected areas. Geomines strives to establish cooperative relationships with local experts and aid agencies, thus modifying present resources to increase the demining efforts and to provide effective assistance to those in need.

Equipment

Currently, Geomines strives to utilize innovative demining technology in its missions. With present technology, it is able to detect PMN, US M42, V99, POMZ-2 and A/T bombs at a maximum depth of 33cm. It also possesses sophisticated technology to detect mines at a greater depth, such as six meters and lower.

As one of Geomines foremost concerns involves the safety of its deminers, the organization supplies its employees with state-of-the-art Personal Protective Equipment (PPE). Once the deminers are appropriately outfitted, they have a selection of detecting equipment to choose from in accordance with their mission. To fully supply its deminers’ needs, Geomines provides artifice’s equipment. Geomines also possesses a wide range of neutralization equipment to fulfill the requirements of each mission in addition to intervention equipment for IED missions.

With this pioneering technology, Geomines eases into the 21st century, possessing the knowledge, skill and equipment to effectively assist mine-affected countries and helping to eradicate the world of this disastrous problem.
Mines Clearance International

History and Objectives

Mines Clearance International (MCI) is an established humanitarian demining agency and a registered charity in the U.K. A fairly new organization, MCI was established in April 1996, to respond to the problem landmines and unexploded ordnance posed to civilians, particularly in the underdeveloped nations of the Southern Hemisphere. MCI staff, though newly on board, includes well-qualified technical and aid personnel with experience in humanitarian responses to the landmine issue.

MCI's objective is to clear land contaminated by landmines and to return it in a safe condition to the most vulnerable groups within the local community. The approach used to bring MCI to its goal is one that aims to transfer technical and organizational skills to local people, such that a sustainable and indigenous capacity can be developed and clearance work can continue long term with minimal expatriate involvement.

The MCI Approach: MCI has eight major outlined approaches that help it maintain and meet its goal. Those approaches are as follows:

Efficient and Cost-Effective Administration: MCI is committed to lean but efficient administration and project support from the U.K. and in-country program offices. Stuffed by experienced humanitarian aid workers, MCI’s support offices keep overhead costs to a minimum while ensuring that the field teams have the necessary level of professional support to operate effectively. The administrators will also ensure that global MCI policy is rigorously enforced throughout the country program down to the remotest operational cell.

Professional Staff Policy: Only the most well qualified Explosive Ordnance Disposal (EOD) and landmines specialists, with demonstrated training abilities and leadership qualities, will be deployed to the field to work alongside local staff. As in any organization, selecting the right personnel is critical to an effective operation.

Provision of the best quality: MCI adopts a total quality approach with regard to demining equipment, especially safety equipment, and provides up-to-date technical and safety equipment to all local mine clearance operatives as a standard.

MCI’s Standard Operating Procedures (SOPs) and its technical and safety equipment all conform to the highest internationally recognized standards.

A commitment to training and the development of indigenous capacity: MCI will assess the technical aspects of a problem in any location, as well as the caliper and educational standards of the local staff, and design specially tailored training packages that will be available to donors from the beginning of any operation. Such training packages will detail the curriculum areas to be taught and the skills to be transferred as well as the necessary time tables to realize a staged development toward fully indigenous operations. Such training of local staff would not be restricted to purely technical skills but would include the full range of project management, policy and finance/administrative skills necessary to hand over operations across the board.

An integrated approach: MCI is committed to implementing an integrated approach, consisting of Mine Eradication, Mine Awareness & Data Gathering, to the problem, which means that developing local mine clearance and eradication capacity cannot be seen as the limits of program activity. Mine Awareness (working with mine-affected communities and assisting them to live more safely in their contaminated environment) is essential due to the widespread nature of the problem in the affected areas and the inevitable slowness of the clearance response. Data Gathering, primarily through collecting and analyzing reliable mine victim data, is also important to understanding which communities are under the most stress from landmine contamination. Therefore, MCI can target the limited clearance resources to the worst-off communities first, as such an effective data gathering program has shown to give inhabitants of mine-affected areas a voice in the prioritization process.

Effective Prioritization of the land to be cleared: Prioritizing the tasks that will produce maximum benefits for the most vulnerable groups within any target community is one of the most daunting tasks facing humanitarian demining agencies. MCI will achieve effective prioritization through a variety of strategies.

Effective land titling of demined areas: By working with the local authorities, especially bodies such as the Rural Development Committee in Battambang, Cambodia, MCI will aim to ensure that the land cleared for economic and residential use by those selected as the most vulnerable sector of the population actually remains with these target beneficiaries in the long term. There have been examples where demining agencies have worked for several months on demining projects only to see them taken over by the military.

A flexible, mobile and responsive operational philosophy: In countries such as Cambodia, demining agencies have traditionally operated large teams of 32 deminers. While these teams are ideal for clearing large areas of land due to the requirement of maintaining 25 meter safety distances between each working pair of deminers, such team sizes waste manpower on smaller tasks. However, experience shows that many of the mine fields and urgent task requests reported to the teams are, in fact, too small to allow full 32 men teams to be gainfully employed. MCI's willingness to be flexible with its personnel and team structure on the ground means that it can be more responsive to the real needs of the community, as well as providing more cost-effective demining services for its donors and target beneficiaries.

Contact Information

Mines Clearance International
293 Brighton Road
P.O. Box 4100
Worthing, U.K. BN11 2HG
E-mail: N.Stewart.mci@ic24.net
Website: www.minesclear.freerove.co.uk
Saving Private Hashim

by Dennis Barlow, Director, Mine Action Information Center

SOMETIMES, A SUBJECTIVE EVENT can focus our thinking the way objective knowledge cannot. The movie "Saving Private Ryan" had the extraordinary effect of causing millions of cinema fans around the world to marvel and, hopefully, to ponder the extent to which we sometimes go to protect the life and dignity of one individual. The premise was that the policy, strategy and resources of a major country at war could be altered in such a way to defy objective logic (risking far too much for one individual) for a limited goal, in this case—to ensure the viability of one family. It occurred to me that the same dedication should be considered for the "foot soldiers" of the mine action world—the demining operators.

Some time ago, I, perhaps callously, more likely out of ignorance, put deminers (detection and clearance personnel) into an all-encompassing category of mine action practitioners with large: Paramedics, geographic information specialists, logistics, food handlers, technicians, psychologists, sociologists, health providers and deminers, I reasoned, were each important and all necessary for a successful mine action program. What I did not recognize was that the risks associated with mine detection and clearance personnel puts them into a category unlike any of the others. Of course, I realized that their situation was different, but I never consciously analyzed the ramifications of this difference until two events occurred. The first was when I heard two researchers discussing the pros and cons of particular versions of protective visors for deminers. When they had both had their say, a director of field operators who had been listening in the background quietly responded by saying that the deminers he supervised would opt against using either. Their reason? They would, he explained, much rather take an explosion full in the face and die quickly than to put up with hot, irritating visors, which would only protect the face partially and, perhaps, cause extra agony in case of an explosion. This bit of reasoning, whether logical or not, somehow humanized this argument, which is rarely represented on the podium of well-choreographed seminars and mine action conferences. Up to that point, I had always heard the (supposed) empirical analysis of personnel protective gear, not the mental reactions of the men and women who wear them.

The second milestone for me was when I read a university researcher's report examining the psychological effects of landmine accidents on surviving team members after a member of the demining team had been seriously injured or killed by a mine explosion. Professor Echerling, in his "Critical Stress Incident Debriefing Guide," made the point that deminers, like firefighters or policemen, can undergo serious mental turbulence in the aftermath of such a tragedy. The chilling effect of such an incident might not only traumatize individual mine clearers, but it might result in a kind of contagious reluctance to return to work or to continue with mine clearance altogether.

The importance of the effects of these observations has led me to conclude that we need to take a "Private Ryan" or, more appropriately, a "Private Hashim" view of the mine action world. That is, since the cleaners and detectors are the "shock troops" of mine action, they need to be protected and considered to an extent, which outweighs their political clout or their simple economic worth. Deminers are not a particularly articulate or diplomatic group of people; they are literally the "guys at the pointy end of the stick."

It is because of this fact that those of us in the landmine information, policy, management, strategic and logistic businesses should pay special heed to the safety and effectiveness of this largely silent but critically important group.

This is not to imply that the research and development community has not continually had the interest of these operators uppermost in mind—it has. Innovative thinkers like Dr. James Trevylan, Colin King and Andy Smith have helped create an unofficial network of requirements and resources that help manufacturers and mine action organizations create new and modified protective equipment. The donor countries and their R&D institutions have paid particular attention to the need for personnel protective equipment. Because they have funded research, development projects have produced many enhanced products.

Most often, it is the local operator who fine tunes a basic equipment package and makes it more effective in a specific environment. Thus, local operators such as Hendrik Ehlers (MgM, Angola) can modify equipment while an organization like MedEng Systems Inc. may consider local modifications for future design of its products. It is this kind of exchange and feedback between local operators and manufacturers that we encourage and see as the best way to fashion new and effective gear. And it is the support of that process by donors and policy makers that will make it possible. It is to this spirit of dedication to the deminer and cooperation among diverse organizations within the international mine action community that this issue of the Journal is dedicated.
It's Mine and You Can't Have It!

by Joe Lokey
Deputy Director, Mine Action Information Center

IT SEEMS TO BE A GIVEN in the mine action community that you are acknowledged as an "expert" simply because you have stood up and declared it so. As with many humanitarian pursuits, there is no process to credential, certify, or license individuals, processes, or procedures in mine action. There is no guild or professional body to oversee and validate the velocity of performance claims. This is frustrating to donors and funding organizations that have little upon which to base outcome expectations. The answer is an open information system and process, transparent reporting, and contributions from the scientific community that are based on solid testing and unbiased findings that tie performance to expected outcomes.

In this issue of the Journal of Mine Action we have solicited a variety of articles on manual deminers and their personal protective gear. As you will see with many of the articles, this segment of the community seems to use basic information about what it can and cannot do more than the other segments of the landmine community. Numbers are important. Decisions are made from them. It seems, however, that information, though wanted by everyone, is shared by few. Curious? Not when you consider the nature of the mine action.

For example, where is this empirical support to the preposterous claims accompanying mechanical equipment releases and developments? Why don't the mine detecting dog people publish the results of their dog teams' efforts in detail? Even those organizations working with victims are reluctant to publicize numbers and data that support their level of effort. Colin King once observed that "one of the greatest obstacles to progress in mine action was peoples in-built reluctance to cooperate" and posited the concept of "information non-cooperation." There are a variety of reasons behind this such as:

- **Sensitivity**
 In spite of the well-intentioned proclamations of most groups and governments, many are sensitive to reporting of casualty rates, number of deminer accidents, causes of accidents, and number of people receiving effective mine awareness education. Sometimes simple nationalism takes over and raw data is frequently manipulated or held in order to either minimize the appearance of incompetence or overstated to influence a more positive message. This reluctance to open organizational or governmental performance data is regrettable and leads to suspicions that can be even more harmful and less productive.

- **Trust Needs**
 Trust needs to be established between those owning the data and those using and basing decisions on that data.

- **Competition**
 NGOs competing for programs and for the funding that goes with them, as well as commercial companies competing for contracts, frequently view the donor pool as a zero-sum entity in which giving to one somehow takes away from another. The fear of "donor fatigue" is, as of yet, unfounded as funded programs seem to be bigger and bigger and donors are still actively seeking solid, outcome-based proposals. Although the Canadian Mine Action Investment database provided for UMINAS is a start, more donor information needs to be made public after tenders are awarded so that the mine action community begins to feel there is plenty of work to go around and funding to support that work.

- **Silver Bullet Syndrome**
 Research facilities protecting their inventions and developments are the absolute worst at sharing incremental achievements in technology fearing the cross-flow will result in others capitalizing on their work. Hopes for commercial exploitation of new technologies (including parenting) is driving a considerable amount of useful information, technology, and data underground waiting for some opportunity to synthesize it and give it utility. It's like everyone has a small piece of a jigsaw puzzle but no one wants to connect their piece with anyone else so that the picture ("answer") may be revealed to all. There will never be a single technology that "does it all." Any metaphorical silver bullet will necessarily be a multi-sensor platform with a complex but reliable data integration and fusion routine. However, this will be impossible to achieve as long as everyone sits on their own little part of the solution.

- **Politics of Ego**
 Personal and professional competitiveness is a part of any discipline and this is no different. Without a clear distinction among professionals, their worth is built on their backgrounds and experiences though they are frequently embellished because few are the wise. Few résumés and CVs receive the attention and scrutiny that they should because this inflation of fact permeates the industry in general. On the brighter side, this is a small community and the less capable and charlatans are known to most and don't last long on the more significant projects. See also, "Cowboy Chic."

- **Donor/Corporate Expectations**
 Expectations of success are generally overstated because of the inability to articulate clear and measurable goals and outcomes. The data required to determine if goals have been met is rarely released therefore comparing planned productivity of operations to the reality of demining or mine action outcomes is difficult at best. Corporations also have an expectation that off-the-shelf technologies unsuitable for other purposes can somehow be adapted to current demining needs which explains their inability to produce widely useful tools and equipment.

Cowboy Chic

Information that could be used to benefit the entire community is frequently held by the ex-patriots and international workers who feel that they have the experience and expertise and don't feel like the hordes of newcomers are worthy of their time. Some have signed on with larger contracts that force them to act like adults while others continue to claim an absolute position of unquestionable authority based on frighteningly little true experience. Some of these are independent consultants who feel their "forgiveness" around landmines grant them some sort of right to withhold data and information unless a sizeable check accompanies the request.

Welfare

Less common, but typical of smaller NGOs who have built long-term relationships with donors, are situations in which agencies seeking to sustain long-term government funding (no incentive to complete a program) are reluctant to pass information to anyone other than their benefactor. Some larger donors, and even governments, have their "favorites" or trusted agents to whom a disproportionate share of tenders and contracts are awarded in this quasi-welfare system that keeps less-than-eficient actors on the mine action stage.

Cost-Benefit Malady

A relatively new disease striking donors of large sums is the paralyzing ability of under-funded and poorly funded organizations to ask for a clear relationship between dollars spent and outcomes produced. Governments are apparently stricken more...
than others with the symptoms of the disease being non-responsiveness and incoherent answers to relatively simple questions. The utility of the answers, even if true and forthcoming, are questionable but there does, indeed, seem to be a chronic reluctance on the part of governments to accurately account for funds spent on mine action initiatives.

Uniformed Ubiquity

One rarely encounters a landmine problem without encountering the military in some shape or form. In some countries, the military are the exclusive owners of all clearance capacity and information. In others, military trainers and advisors pass along skills and knowledge while lending considerable logistic and communications support to clearance efforts. In spite of everything militaries have to offer, there is a strong propensity among all militaries to distrust civilian institutions, especially aid agencies, and, as a consequence, withhold valuable and useful information. This is changing albeit slowly as more integrated efforts occur and trust is built. Similar to the Silver Bullet Syndrome above, military research and development results and outcomes are also classified and withheld for years before emerging into the public realm based on fears that new technologies in countermine R&D would be challenged by an adversary. This may be particularly true in the sensor area more than others.

Signatory Sickness

In one of the more perverse consequences of international cooperation, there seems to be a reluctance among signatories of the Ottawa Convention to not share information with non-signatories of the convention. In a self-defeating act of self-righteous indignation, this refusal to both provide and share useful information to organizations attempting to assist in mine action efforts is having the unintended consequence of actually slowing progress and making the entire effort more costly thus killing or injuring more people that could have been saved. This form of moralistic political partitioning is not only harmful it's just plain silly.

In short, we see a common thread of “information = power” running through nearly all of these which seems to typify the frustration and outlook of many. Unless and until there are more teaming arrangements, multilateral contract awards, partnerships and other trust-building measures taken that emphasize comparative advantages, this inability to access simple common data for the greater good may actually get worse before it gets better. The United Nations and other large donors, particularly through the Mine Action Support Group (MASG) and other like efforts, can play a great role in opening these doors by encouraging through contracts and bilateral relationships an open systems architecture for all mine action data and information. Host country mine action centers (MACs), who have historically and understandably not programmed manpower for this, can add functions to their staff that enhance their ability to collect and disseminate information of wide use to a variety of people and organizations. It's just data. It's not evil and it won't bite. As this issue of the *Journal* demonstrates, the PPE community is doing a decent job of getting good data out to you, the consumer, on what you need to know to make more informed choices. The job ahead of all of us is too important to continue with practices that are both petty and irrelevant to efforts to rid land of mines and UXO. There are enough challenges and obstacles facing all of us without simple communication being the first casualty of any operation. Talk to us and tell it like it is. The objective, after all, is to make the process better. Right?