UIDMA in Bosnia and Herzegovina, With Possibilities for Wider Use

Almir Budalica

BHMAC

Follow this and additional works at: http://commons.lib.jmu.edu/cisr-journal

Part of the Defense and Security Studies Commons, Emergency and Disaster Management Commons, Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation

Available at: http://commons.lib.jmu.edu/cisr-journal/vol7/iss2/14

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
Situation, and to manage corresponding education and training courses.

The RHINO is a perfect tool for remote demining of large agricultural areas, especially in combination with mine detecting dogs or manual demining methods. All details about RHINO can be found in SOP RHINO upon request. So far, the RHINO cleared:

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Projects</th>
<th>Cleared Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>35</td>
<td>2,499,155</td>
</tr>
<tr>
<td>1997</td>
<td>151</td>
<td>8,358,187</td>
</tr>
<tr>
<td>1998</td>
<td>84</td>
<td>7,617,660</td>
</tr>
<tr>
<td>1999</td>
<td>70</td>
<td>5,564,106</td>
</tr>
<tr>
<td>2000</td>
<td>4</td>
<td>403,729</td>
</tr>
<tr>
<td>2001</td>
<td>12</td>
<td>3,726,999</td>
</tr>
<tr>
<td>2002</td>
<td>2</td>
<td>122,930</td>
</tr>
</tbody>
</table>
| Total | 475 | 45,356,032

The Bosnia and Herzegovina Mine Action Centre (BHMAC) recognized the need for and developed a new model of the Unique Identifier of Mine Action (UIDMA). The author outlines the new model and its benefits in identifying aspects of mine action.

Summary

A need for UIDMA has been recognized in the Bosnia and Herzegovina (BiH) mine action community. The purpose of UIDMA is for users to be able to identify an entry of mine action properly, regardless of the type of information (data on risk, accident, etc.) or activity (clearance, mine awareness education, quality control, etc.). The existing model is fixed (20 digits) and does not provide any flexibility. The consequence of the lack of flexibility is that identifiers of some mine action data contain unnecessary data (two, four or even eight zeros). The new model would provide more flexibility and enable unique identification of UID of any mine action to incorporate only data that is relevant. Possibilities for eventual wider use are based on the flexibility of the system and its capability to cover all the aspects of mine action in more than one country. "Flexibility" means that UIDMA could classify all mine-related information from the countries that carry out different procedures in mine action. One of the benefits of wider use of UIDMA would be easy mine action data interchange and referencing.

Main Problem

UIDMA has already developed UIDMA according to the procedures performed at the time of development and according to the geo-political situation of the country. The identifier consists of 20 digits, and is quite easy to read.

Generally, UIDMA consists of two elements: georeference (country, district, region, municipality) and mine action (data or activity). The mine action data elements follow the demining procedures: consignment of a general survey ID, a Task ID, an Inspection ID and a Clearance ID. After the general survey is done, some areas are declared as risk areas and the project is prepared for demining. Upon receipt of the budget, a task is created and demining begins. Upon completion, a clearance certificate is issued. Meanwhile, there are demining quality control inspections. Identifiers for certain aspects of mine action in some countries are rapidly growing, i.e. they require more digits. This problem is obvious in Bosnia. When using a linear incremental identifier for certain aspects of mine action, it gets higher with each record added. For example, there are about 8,000 records of general survey in Bosnia. In a few years it will reach 10,000 and five-digit identifiers will be necessary.

Consequences

UIDMA will need one more digit (maybe two) that will change the identifier.
UIDMA Description

UIDMA composition would include:

- Numerical (or decimal) identifiers
- Reference tables ("Code book")

Components of UIDMA

As mentioned, UIDMA consists of two major parts: geo-reference and mine action data. Geo-reference follows the political constitution of the country hierarchically, i.e., from the highest level (nation or region) to the lowest level (municipality). The mine action data part of UIDMA follows the chronology of mine action: from survey through risk area, project, task and inspection to the clearance certificate issuance. Roughly, UIDMA is composed as shown in Table 1.

With decentralized entry, it is possible that two separate offices can enter the same data. Due to the nature of operational requirements (e.g., urgent demining), sometimes surveys from one regional office area of responsibility (AOR) perform activities in an adjacent AOR. Thus, it is possible that an activity of another regional office in the same AOR (and municipality) gets the same ID. For this reason it is necessary to include the ID of the office of data entry in UIDMA. Possible use of UIDMA in countries with centralized data entry would not need ID of the office of entry in data entry. The longest possible UIDMA (18 digits) would look like this: 462091263039430419 (numerical) or 4.6.2.09.12.6.3.0394.3.04.19 (decimal).

The point is that the Mine Action Data Part of UIDMA is based on the chronology of mine action from, the general survey and declaring the risk area, through project definition, task creation, demining (along with quality control) to issuing the certificate. When the whole procedure is completed, it makes sense for UIDMA to be 20 digits long. However, when it is still a project (without task created, quality control carried out and certificate issued), the rest of UIDMA is not necessary (task ID, inspection ID), since it consists of zeros. This is not to mention misfield or accident data, which does not involve (not directly, in regards to UIDMA) survey, task, inspection or clearance.

So how do we determine whether a certain part of UIDMA is a task in one case, and a project (or survey) in another case? The solution is outlined in Table 2. The value of the status shows the grade of an item identified by UIDMA—its is still a project, ongoing task, inspection or finished task. Alternatively, it could also be a no risk-area. In that case, no other parts of UIDMA are necessary. Thus, it is not necessary for task, clearance and inspections to get separate IDs; they are defined by the survey ID as a primary identifier within the mine action data part of UIDMA. Activities that follow a survey (risk area, project, task, inspection and clearance) are defined by item No. 7 in Table 3 (information type). Item No. 9 in Table 3 (Status) shows the degree of activity at the mine action scale of UIDMA.

Adding and updating the items in the reference tables cannot be avoided, as mine action is a dynamic process that is continuously improved. For the sake of data integrity, any new item in the reference tables must be added at the end of table, with an incremental ID. Changing existing items is not recommended, but can it be done simultaneously, in order to preserve classification system integrity? Optionally, the ID of a demining agency and its type, as demonstrated in Tables 6 and 7, could be added to the structure of UIDMA.