The MineWolf Toolbox System: Ground Preparation to Mine Clearance

Heinz Rath
STS Safety Technology Systems

Follow this and additional works at: https://commons.lib.jmu.edu/cisr-journal

Part of the Defense and Security Studies Commons, Emergency and Disaster Management Commons, Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Available at: https://commons.lib.jmu.edu/cisr-journal/vol7/iss3/13

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
The MineWolf Toolbox System: Ground Preparation to Mine Clearance

The MineWolf Toolbox System, which operates in minefields near Sarajevo, is a mine clearance device that has been used to improve efficiency and effectiveness in demining operations. This article discusses the benefits of the MineWolf Toolbox System and compares it to other demining machines and technology currently used to clear minefields.

Introduction

MineWolf is a joint German-Swiss mine clearance concept developed through the collaboration of an industrial machinery manufacturer based in Herborn, Germany (the AHW), RUAG Land Systems, based in Thun, Switzerland, and the Safety Technology Systems (STS) in Germany. In our detailed discussions with the Mine Action Centre (MAC) in Bosnia and Hamburg (BfH) as well as in Croatia, we learned that the emphasis on future demining activities is on the large areas of minefields and suspected fields. Croatia has 1,630 sq km with approximately 700,000 mines and items of UXO, and BfH has 2,089 sq km of suspected areas. The ratio of suspected fields to mined fields is about 10:1. Obviously, demining these areas is a challenge that can only be met with the use of improved mechanical demining machines (in terms of cost and time). We asked the users, the MACs and the non-governmental organizations (NGOs) whether today's technology met their requirements, and have come to the conclusion that today's tiller or Ball machines need to be improved.

Performance Comparison of Today's Mechanical Demining Systems

The present tiller systems are not heavy (up to 55 tons), nor large in size (tank size) and too expensive, with high operational costs and limited mobility. The high operational costs are the result of AT mine blasts that occur next to the tiller, which lead to damage to both the tiller and the machine. The Ball system avoids the disadvantages of high weight and cost. AT mines explode far in front of the machine, and the blast can even be transferred through the chains, resulting in a reduced impact on the machine. In addition, the ground-bearing equipment is easy to replace if damaged. However, the Ball machine suffers from limited demining depth, problems with vegetation and the need for intensive quality assurance (QA) with manual dog-demining.

The MineWolf System

Clearance Methodology

Clearance of mined APMAT minefields is divided into two phases. First, the Ball system detrones or breaks up the AT and MT mines. Then, with a ground penetration depth of 30 cm, the tiller system breaks up the remaining intact mines and reduces the size of components left by the tiller.

Description of MineWolf Technology

MineWolf Technology combines the strengths of the Ball and tiller systems to create a more efficient and effective demining system. The following list describes some of the important characteristics of the MineWolf System.

Contact Information

Gita Zin
Institute for Animal Studies
Kibbutz Lahav, Israel
Mobile: 052-96-2765
Fax: (08) 991-6380
Email: townsw@jmu.edu

Published by JMU Scholarly Commons, 2003
The MineWolf is a multi-purpose part of the demining toolbox.

Specifications for the Use of Mechanical Demining Machines in BiH for Survey Areas

The Bosnia and Herzegovina Mine Action Center (BVAMC) has released the standard operating procedure book, SOP-14. In chapter four, on page 3/16, the specification reads as follows:

"The basic Bosnian and Herzegovina Standard layout for a machine is as follows: machine with technical and other characteristics proved through testing, which is capable of removing vegetation and disturbing the soil to the minimum of 10 cm into the depth, breaking it in pieces not larger than five cm in diameter, prevents the adequate quality that is achieved by using the plowdr (minimum 10 cm in depth), or the detector, which is supposed to locate the minimum metal core mass into 10 cm into the depth (PMA-S). Provided these characteristics might be used at suspect areas, for which there is no reliable data on mining, the BH Standard in Chapter IV: Mechanical Preparation of the Ground proposes these areas (entire or partially) be declared as areas without obvious risk, provided there were no explosions or visible mines found on the surface or their pans. Such areas would not be further threatened, while the demining resources might be deployed at other mined areas.

For machines, as used today do not meet these requirements and are therefore only to be used as ground preparation machines. The MineWolf, with its rough (tiller) and fine (filter) operation, has the potential to meet the specifications and may be considered for survey operation as a mine-clearing machine. The MineWolf can be used as a mechanical detection system to mark the edges of the minefield and thus achieve area reduction.

Experience has proven that during demining mines can be destroyed without exploding, AP and AT mines with plastic cases can burst into pieces but not explode. Fuses and pieces of TNT may still be left. PRDMs with metal bodies might not be completely destroyed. The partially destroyed mines remain as a residual risk. In the discussion about the danger of these residues, the following proposals should be considered:

- No further treatment providing SOP-14 (area without obvious risk) will be met.
- The VIN requirement of 99.6 percent must be fulfilled.
- Repeated tiller operation to break up remaining mine parts into smaller pieces should take place.
- Visual control should occur by explosive ordnance disposal (EOD). If mine parts are found, 100 percent manual survey is necessary in the surrounding five-meter area.
- Survey with EOD and mine dog should be conducted. The burn mine should be found due to the intense smell of TNT.
- Survey with an array metal detector mounted directly behind the MineWolf, with colour marking or global positioning system (GPS) identification. With this method, pieces of UXO can be found. All these methods would drastically reduce time and cost compared with today's practise of 100 percent survey with mine/dog on survey fields.

Technical Testing by BWB (German Army), RUAG (Tunnel Test) and ITEP (Field System)

A functional prototype vehicle was tested by the German army at their test fields in Koblenz and Meppen. Ninety-five inert test mines, AP and AT mines of different types, were buried up to 30 cm deep at different ground conditions. The aim of the test was to measure clearance effectiveness. The German army came to the following conclusion: "All mines and mine parts detonated by the MineWolf have been destroyed leading to a minefield without danger."

Based on RUAG's broad expertise in testing armoured vehicles, we decided to test the protective features with a functional full-scale model in the test tunnel of the Swiss army. The test demonstrated that the MineWolf is protected against AP mines with up to 2 kg of TNT, and against AT mines with up to 7.5 kg of TNT. The health risk of the driver was investigated by means of a dummy. The test proved that the tiller system and the mechanical power drive are very robust. The driver is safe under all conditions.

The International Test and Evaluation Program (ITEP) tested the full system on a British army test field in Shoburyness against AP and AT mines with up to 7.5 kg of TNT. Based on an armament 100 Teller Arcmee is the supplier of the flail system. The two AT-sized mines provided useful information. The most significant conclusion is that the flail unit is well-designed for venting large explosive blasts.

Summary

Based on the positive test results, the MineWolf Toolbox System will lead to improvements over today's mechanical technology in the following areas:

- Demining effectiveness and quality of demining process
- Weight
- Transport and mobility
disadvantage
- Operational costs
- Production time (the machine can be manufactured within four months)
- Ability to be used for multiple purposes in land preparation

Tests on the MineWolf helped determine that the flail unit is designed for venting large explosive blasts.

The MineWolf clearing a minefield.

The MineWolf operates in minefields near Sarajevo from July until September, managed by the German humanitarian organization HELP. The demolishing is sponsored by the Department of Foreign Affairs of the Federal Republic of Germany.

*All photos courtesy of the author.

References


Contact Information

Heinz Bath
Safety Technology System (STS) Engineering/Consulting
Sebastian-Krupp-Str.73a
D-56719 Völlmar
Germany
Tel: +49 261 6 679 628
Fax: +49 261 6 679 629
E-mail: h.bath@mineswolf.com