August 2002

Developing Safer Demining Handtools in Zimbabwe

Andy Smith
Humanitarian Mine Action Specialist

Follow this and additional works at: http://commons.lib.jmu.edu/cisr-journal

Part of the Defense and Security Studies Commons, Emergency and Disaster Management Commons, Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation
Available at: http://commons.lib.jmu.edu/cisr-journal/vol6/iss2/7

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
Developing Safer Demining Handtools in Zimbabwe

This article reports on an R&D programme in Zimbabwe that led to the development of safer demining handtools. The programme is an example of the way in which small changes can make the deminers’ work safer.

by Andy Smith, AVS Consultants

Introduction

A research and development program to design, develop, demonstrate and test a wide range of Personal Protective Equipment (PPE) was initiated by the U.S. Army Communication and Electronics Command (CECOM), Night Vision and Electronic Sensors Directorate (NVESD), Humanitarian Demining Program in 1999–2000. In conceptual breakthrough, the PPE included safer demining handtools as an integral component of the personal protection scheme. The contractor, Andy Smith (AVS Consultants), conducted this effort in Zimbabwe, a mine-affected developing country, with the side effect of establishing indigenous production capability and realistic conditions in which to test and evaluate. The contractor and author of this paper, AVS, retains no interest (commercial or otherwise) in exploring these results. The U.S. Army CECCOM, NVESD point of contact for this effort is Charles Chichester at charles.chichester@nv.army.mil. The programme involved close collaboration with a company in the small industrial sector of Harare, Zimbabwe. That company is currently producing the tools.

Inappropriate Tools Main and Kill

A study of recorded demining accidents revealed that deminers frequently suffer severe injury when the tools they are using are unsafe. They fail by being so short that the user’s hand is inside the most violently disruptive part of the blast, or by breaking up and becoming fragments when a detonation occurs. The picture to the right shows a range of tools commonly used in demining around the world. Many were designed for another purpose, and there is palpable evidence that almost all of them are unsafe for use in demining. Some of those that were designed for demining are also unsafe.

It is not only the users’ hands that suffer. At least five deminers have died after part of their handtool struck them. Parts of tools have severely damaged the upper arm that amputation was needed. Parts of brittle handles have pierced the users’ chest cavity. The head of a garden tool has sliced the user’s face in half—Injuries from which he later died. The mangled head of the yellow-handled garden trowel (shown on the right) was discovered inside a deminer after he arrived in hospital.

Contact Information

Handrik Elbers Chairman, Director OIS and R&D
Stiftung Menschen gegen Minen eV
Gmü Mind/Clarence NGO
International Desk Namibia
Cell phone: +264 81 1277020
Fax: +264 61 24347
E-mail: demo@mgm.org
Website: www.mgm.org

Design Rules

The following design criteria were adopted for making appropriate excavation tools. Tools used during other demining activities may not have the same requirements.

1. The user’s hand should be at least 30cm from the point of any tool. Some argue that this is too long for U.S. user to control, I suggest they try because this is not the case.

2. The materials used must be sufficiently malleable for the tool to distort in any AP blast mine detonation.

3. The tool must be designed so that it does not readily separate into component parts in any AP blast mine detonation—this usually means that the shaft must be taken right through the handle.

4. The tool should be designed so that it is easiest to use at a low angle to the ground by a kneeling or squatting deminer, so encouraging the user to keep his hand beneath the fragment zone associated with many detonations.

5. Whenever possible, the tool should include a blade-guard for the hand using it.

It is not specified that tools should be designed for one-handed use, but this is recommended in order to expose only one hand to risk. Also, products designed for two-handed use put the ‘guide’ hands in danger.
Landmines in Africa

The Pick-Prod

Made from a "T" section of mild steel, the Pick-Prod blade is 31 cm long. It can be used to pick at the ground with considerable force without the blade bending. In softer ground, a twisting movement breaks the ground more efficiently than a bayonet. The blade extends through the handle. Ground broken up with this tool should be removed using the Excavator or Mini-Spade. The Pick-Prod weighs around 0.5 kg (1.2 lbs). In tests pressed against PPM-2, MAJ-75 and PDM-6 mines, the blades distorted as intended.

3. The tool did not separate in AP blast mine tests.
4. The tool is easiest to use at a low angle to the ground by a kneeling or squatting deminer. The "Excavator"

Designed as an alternative to the pick or spade commonly used in demining, this unconventional tool has a forward thrust, followed by a sideways sweep to remove the loosened spoil. The sideways sweep pulls the tool over the user's wrist. To avoid this, the tool is extended so that a sideways movement is supported at the forward end. Walking back from the centre of the detector reading, the user digs a downward slope towards the reading. If a mine is present (and horizontal), the side of the mine will be exposed. The Excavator folds in half for easy transportation and weighs 0.9 kg (2lb). In blast tests, the blade was distorted as intended and the metal structure, welds and fixings survived without visible damage. The handle was revised (the handles in the middle of the post-blast test picture is the final version).

The Mini-Spade

This tool is based on the common demining pick or "probe." With a 40 cm long blade, the shaft is 8 mm stainless steel that extends through the handle and has been reduced to 5.5 mm in one plane. The tool blade is almost oval in cross-section, but actually has flat sides as shown on the right. The tool is designed to be used with a forward thrust by one hand. The forward movement is followed by a rotating action to reduce friction, then a further forward thrust to move deeper into the ground. The "oval" concept was published by a demining research group led by David Levy at MIT.

1. The tool's length makes it easiest to use at a low angle to the ground by a kneeling or squatting deminer. It is virtually impossible for a deminer in that position to use it to dig vertically. The Demining Brush

There is no evidence that an accident has occurred as using the paint brushes commonly seen in demining tool sets. They are used to brush away the final soil sticking to the side of a mine or suspicious object. However, paint brushes are not designed for this purpose. They are far too soft for safety, and the bristles are usually too soft to perform their function well.

The Demining Brush uses a 40 cm section of malleable stainless steel pipe with bristles set into it at both ends. This is a reversible tool, the Demining Brush has stiff "yard-booze" bristles at one end and softer hand-brush bristles at the other. In tests, the bristles of the brush were placed on top of a mine. The bristles were burnt off.

The Demining Brush complies with the design rules in the following ways:
1. The user's hand is at least 30 cm from the point of tool.
2. The materials distorted in AP blast mine tests.
3. The tool did not separate in AP blast mine tests.
4. The tool's length makes it easiest to use at a low angle to the ground by a kneeling or squatting deminer.

During the programme, the team was asked to develop a means of picking up the mines that had been deposited on the ground surface by a machine. The mines were to be moved to demolition pits for destruction. The Mine-grab was the result.

The Mine-grab

The Mine-grab is a two-handed tool with the weight supported by the fore arm. The left hand holds the snedding handle; the right hand rests in the support and pulls the trigger to grip the mine. The grabbing head is angled so that the mine can be approached from the side while the user stands upright.

It turns over, positions and picks up mines with relative ease and keeps them over a meter away from the man doing so. Assuming he has frontal protection and a visor, he should survive an AP blast detonation without serious injury. I recommend long rubber knee-pads to extend a frontal apron to the ground when working while standing. In tests, we removed mines in the jaws of the grab. The polycarbonate jaws burnt up, but the shaft and the handle were unharmed.

The Complete Tool Bag

To make the tools more attractive to the manufacturer to advertise and sell, we designed a bag and filled it with everything that a deminer might need. The bag itself is made from waterproof canvas reinforced with polycarbonate. The lining has pockets for all the tools, held in place with Velcro straps. The bag can be used as a "suitcase" or a backpack. Several demining groups are now using the excavation tools.

Acknowledgements

The following workshop participants and others contributed greatly to this programme: Colin Jenkins, Field Bureau, Famine Children (PPM-2), Paul Mangan, Famine Children (MAJ-75), Nicky Creney, Famine Children (PDM-6), Svein Myrhaug and Torafrem Blum, CECOM (PPM-2), Peter McFaul, CECOM (MAJ-75), John Kith, Tomoh Kurosaka, Fredrick Fould, Noel Spencer, John Maternity, Steve Hensby, Hisato Matsuura, Heid Stahl and Garry Ronick.

Most thanks are due to all at U.S. Army CEMED IVNSD, in particular Charles Ochse, the late Beverly Bean and Colonel George Zakrzewski.

Contact Information

Andy Smith, AVS Consultants E-mail: avs@landmines.demon.co.uk

Manufacturer

Thomson, Seisim, Inc. Seisim Devices Pvt. Ltd. 14 George Avenue, Musu, Harare PO Box 125, Amby, Harare, Zimbabwe Tel: (263) 4-4878645/6 Fax: (263) 4-486885 E-mail: secdex@imaginex.com.co.uk

The Mine-Grab

The Mine-Grab is a variant on the gardening tool that often features in a deminer's toolkit. It is used to clear loose soil and to excavate in soft ground. The shaft of the tool extends through the handle and keeps the user's hand at least 30 cm (12in) from the tip of the tool. The demining tool is in widespread use but has not been blast tested.

The Demining Trowel complies with the design rules in the following ways:
1. The user's hand can be at least 30 cm from the point of tool.
2. The tool is used in the same materials and methods as those that were blast-tested, so it is expected to stay in one piece during AP blast mine detonations.
3. The tool's length makes it easiest to use at a low angle to the ground by a kneeling or squatting deminer. The complete tool weighs around 0.6 kg (16oz).

The Mini Pro is a small excavation tool designed to remove spoil loosened by the Pick-Prod or the MiT profile probe, or to dig extra excavations in sand. It is designed so that it cannot be used as a pick or probe vertically and is ineffective on hard soils that have not first been predug. The shaft extends through the handle.

The tool is designed to fit in a belt when excess force is applied. Small points to add safety to use for excavation of spoil that has not already been loosened—a process that would involve the risk of digging beneath a mine and detonating it with upward pressure. The complete tool weighs around 0.2 kg (0.5 lbs). After blast tests with the blade beneath PPM-2 and PDM-6 mines, the tool had distorted as designed.

The Mini-Spade complies with the design rules in the following ways:
1. The user's hand is at least 40 cm from the point of tool.
2. The materials distorted in AP blast mine tests.

The MIT Profile Needle-Probe

This tool is used in demining programs or "probes." With a 40 cm long blade, the shaft is 8 mm stainless steel that extends through the handle and has been reduced to 5.5 mm in one plane. The tool blade is almost oval in cross-section, but actually has flat sides as shown on the right. The tool is designed to be used with a forward thrust by one hand. The forward movement is followed by a rotating action to reduce friction, then a further forward thrust to move deeper into the ground. The "oval" concept was published by a demining research group led by David Levy at MIT.

The MIT Profile Needle-Probe weighs around 0.5 kg (1.2 lbs). In blast tests, pressed against PPM-2, MAJ-75 and PDM-6 mines, the probes distorted as intended. The basic design has also performed well in more than a dozen actual demining accidents. The MIT Profile Needle-Probe complies with the design rules in the following ways:
1. The user's hand is at least 40 cm from the point of tool.
2. The materials distorted in AP blast mine tests.
3. The tool did not separate in AP blast mine tests.
4. The tool is easiest to use at a low angle to the ground by a kneeling or squatting deminer. The "Excavator"

Designed as an alternative to the pick or spade commonly used in demining, this unconventional tool has a forward thrust, followed by a sideways sweep to remove the loosened spoil. The sideways sweep pulls the tool over the user's wrist. To avoid this, the tool is extended so that a sideways movement is supported at the forward end. Walking back from the centre of the detector reading, the user digs a downward slope towards the reading. If a mine is present (and horizontal), the side of the mine will be exposed. The Excavator folds in half for easy transportation and weighs 0.9 kg (2lb). In blast tests, the blade was distorted as intended and the metal structure, welds and fixings survived without visible damage. The handle was revised (the handles in the middle of the post-blast test picture is the final version).

The Demining Trowel

The Demining Trowel is a variant on the gardening tool that often features in a deminer's toolkit. It is used to clear loose soil and to excavate in soft ground. The shaft of the tool extends through the handle and keeps the user's hand at least 30 cm (12in) from the tip of the tool. The demining trowel is in widespread use but has not been blast tested.

The Demining Trowel complies with the design rules in the following ways:
1. The user's hand can be at least 30 cm from the point of tool.
2. The tool is used in the same materials and methods as those that were blast-tested, so it is expected to stay in one piece during AP blast mine detonations.
3. The tool's length makes it easiest to use at a low angle to the ground by a kneeling or squatting deminer. The complete tool weighs around 0.6 kg (16oz).