Journal of Conventional Weapons Destruction

Endnotes Issue 22.3

CISR JOURNAL

Follow this and additional works at: https://commons.lib.jmu.edu/cisr-journal

Part of the Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation

Available at: https://commons.lib.jmu.edu/cisr-journal/vol22/iss3/11

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
Landmine Free 2025: A Shared Responsibility by Wallen and Loughran [from page 6]
5. The Individualized Approach, created by the APMBC Committee on the Enhancement of Cooperation and Assistance, aims “to support individual states to voluntarily provide detailed information on the challenges it faces and its needs with the aim of fulfilling the remaining obligation of the Convention in an effective and expedient way.” It facilitates a collaborative approach between states, the donor community, mine action operators and other stakeholders. https://bit.ly/2OMqqCp.

Enhancing Humanitarian Mine Action in Angola with High-resolution UAS Imagery by Cruz, Jaupi, Njamba, and Cottray [from page 15]
5. UAS output products are processed, geo-referenced, and visualized in a comprehensive way. UAS row images combine with data from other sources (e.g., IMSMA database) and are presented in the format of various maps (e.g., heat-maps) and dashboards.

The Effects of ERW Contamination in Sri Lanka by Dathan [from page 32]
3. According to HALO representatives in Kilinochchi in December 2017.
7. According to interviews conducted with the President of the Spinal Cord Injury Association in the Northern Province in December 2017.
9. Interviewed in the Northern Province in December 2017.
sri-lankan-politicians-have-they-started-to-steal-cowsnow/.

17. According to HALO representatives in Kilinochchi in December 2017.
19. Interviewed in the Northern Province in December 2017.

Opportunities for Regional Training and Information Exchange Reap Benefits for Central Asia by Ober, Shozodaeva, Akhmedova, and Fiederlein [from page 37]

Demining the Tajik-Uzbek Border: What have we learned from the Tajik experience? by Garbino and Huseinov [from page 45]
13. The coordinates for these accidents are Oftobrui 40°10'26.10"N 70°40'41.40"E, Chashma 39°49'57.70"N 68°38'25.10"E, and Chashma 39°49'57.00"N 68°38'26.20"E.
16. Even though the composition of Uzbek minefields is not known, survey teams have found evidence of OZM-72 anti-personnel mines.
17. Nickhwah Din Mohammed, Programme Manager, Swiss Foundation for Mine Action in Tajikistan and Afghanistan, interview by Henrique Garbino, face-to-face, 26 June 2018.
18. It is possible to estimate the confirmed hazardous area by applying the average size of minefields found on the Tajik-Afghan border (A = 55,000 m²) to the identified suspected hazardous areas on the Tajik-Uzbek border (n = 60). The final estimated areas (55,000 x 60) thus equal 3,300,000 m². Time for completion is estimated on the basis of 10 demining teams clearing 100,000 m² annually.
19. Estimating the average length of the polygons is not complicated if their shape is known. However, it is well-known that minefields might be laid in various shapes (circles, octagons, rectangles, square, etc). For the sake of simplicity, we converted the known areas of the registered minefields in Tajikistan into perimeter lines and then bisected the perimeter. Thus, it is possible to estimate the length of contamination along the Tajik-Uzbek border by multiplying minefield average length (L = 596.6 m) and the number of suspected hazardous areas (n = 60), as identified in casualty data. The final results show that the extent of contamination totals 35.8 km (596.6 x 60).
21. The reduction in funding coincided with the end of mechanical demining operations due to lack of areas suitable for this type of
clearance. After the end of mechanical clearance, funding levels were not maintained to cover the mobilization of additional manual teams to compensate for the lack of mechanical capacity, even though existing mechanical teams from the Ministry of Defence and the Swiss Foundation for Mine Action were converted to manual teams.

22. Until 2014, the coordinating body for all the mine action-related activities was the Tajikistan Mine Action Centre (TMAC), a project mostly funded and run by the United Nations Development Programme (UNDP). The last five years nationalization of the TMAC has been a major focus of UNDP. The efforts from UNDP, together with the support and commitment of the Government of Tajikistan, enabled the nationalization of the TMAC and the creation of the TNMAC. National ownership and responsibility were finally recognized through the official establishment of TNMAC as a national mine action centre under a dedicated entity on 3 January 2014. UNDP was then transformed into the Supporting Team for Mine Action Programme (STMAP), with a limited number of advisers working together with TNMAC officers with specified role of capacity building. As of today, the TNMAC enjoys full responsibility of all mine action activities in the country.

23. TNMAC implementing partners are the Swiss Foundation for Mine Action (FSD), the Norwegian People’s Aid (NPA), the Ministry of Defence (MoD), the Committee of Emergency Situations and Civil Defence and the Union of the Sappers of Tajikistan (UST).

28. Melissa Andersson, Country Director, Norwegian People’s Aid Humanitarian Disarmament Programme Tajikistan, interview by Henrique Garbino, face-to-face, 27 June 2018.

References