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Two rapidly emerging technologies revolutionizing scientific problem solving are unpiloted 
aerial systems (UAS), commonly referred to as drones, and deep learning algorithms.1 Our study 
combines these two technologies to provide a powerful auxiliary tool for scatterable land-

mine detection. These munitions are traditionally challenging for clearance operations due to their 
wide area of impact upon deployment, small size, and random minefield orientation. Our past work 
focused on developing a reliable UAS capable of detecting and identifying individual elements of 
PFM-1 minefields to rapidly assess wide areas for landmine contamination, minefield orientation, 
and possible minefield overlap. In our most recent proof-of-concept study we designed and deployed 
a machine learning workflow involving a region-based convolutional neural network (R-CNN) to auto-
mate the detection and classification process, achieving a 71.5% rate of successful detection.2 In 
subsequent trials, we expanded our dataset and improved the accuracy of the CNN to detect PFM-1 
anti-personnel mines from visual (RGB) UAS-based imagery to 91.8%. In this paper, we intend to 
familiarize the demining community with the strengths and limitations of UAS and machine learn-
ing and suggest a fit of this technology as a key auxiliary first look area reduction technique in 
humanitarian demining operations. As part of this effort, we seek to provide detailed guidance on 
how to implement this technique for non-technical survey (NTS) support and area reduction of con-
firmed and suspected hazardous areas with minimal resources and funding. 

Introduction
Explosive remnants of war (ERW), including unexploded ordnance 

(UXO) and landmines, resulted in a recorded 5,554 casualties in 2019 
with nearly half (43%) of the civilian victims—for whom the age was 
known—being children.3 In 2019, an estimated 164,000 emplaced anti-
personnel mines were destroyed globally, but completely clearing the 
world of anti-personnel mines is still decades away as there are tens of 
millions of mines estimated to reside in place worldwide, assuming no 
new landmines are deployed.4 As of 2007, experts estimated that ten to 
twenty landmines were laid for every mine cleared, considerably exac-
erbating the landmine crisis.5 However, since the recent success of the 
implementation of the Anti-Personnel Mine Ban Convention (APMBC), 
this number may be less but is unknown. In the last decade, anti-per-
sonnel landmines have been used in active conflicts in at least fifteen 
countries, including but likely not limited to Afghanistan, Colombia, 

India, Iraq, Israel, Libya, Myanmar, Nigeria, North Korea, Pakistan, 
Syria, Thailand, Tunisia, Ukraine, and Yemen.6 The pace of mine clear-
ance is largely driven by operator experience, the technological capac-
ity of mine-detection technology, and environmental difficulty, which 
can be quantified by survey area and ratio of successful detection rela-
tive to false flags. Recent studies demonstrated that preliminary rapid 
wide-area surveys conducted by unpiloted aerial systems (UAS) may 
be utilized to initially constrain search areas, ultimately decreasing the 
time and cost associated with humanitarian mine action (HMA) while 
reducing the safety risk to clearance operators.7–12

Terrestria l electromagnetic-induction (EMI) methods are 
current ly one of the main standard approaches to HMA.13 While 
hand-held EMI detector surveys have proven themselves as one of the 
most reliable geophysical techniques for HMA, their implementation 
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has a number of shortcomings: (1) they have high false-positive alarm 
rates in the presence of metallic clutter; (2) they are are time and labor 
intensive, especially in difficult terrain; and (3) they entail operator risk. 
Some of these shortcomings can be mitigated if suspected hazardous 
areas (SHAs) are constrained by autonomous surveys providing an ini-
tial assessment of mine presence and subsequently expanded to clas-
sify mine type, mine condition, minefield density and orientation, soil 
type, and other environmental parameters. Modern unpiloted aerial 
vehicle (UAV) platforms capable of flying at low altitudes and collecting 
autonomous surveys, coupled with sensitive and compact visual, ther-
mal, multispectral, and magnetic sensors, often allow operators to rap-
idly identify small anthropogenic targets previously identifiable only in 
ground surveys in certain situations.14

Over the last decade UAVs have become more reliable, and their 
push into the consumer market considerably decreased their costs. 
In parallel with the advancement of UAV technology, modern min-
iaturized optical and geophysical sensors became smaller, more sensi-
tive, less costly, and mountable on UAV platforms. Advances in UAV 
and sensor technologies enabled the development of reliable UAS for 
wide-area, high-resolution remote sensing and geophysical surveys to 
address some of the most pressing humanitarian challenges.8–12 With 
recent developments in small autonomous UAVs, advanced sensors 
have the potential to significantly contribute to the field of HMA, as 
this allows for rapid low-cost data acquisition over wide areas in a safe 
and time-efficient manner. However, the emergence of UAS surveying 
has led to the new problem of analyzing these large (both in terms of 
area covered and file size) and prohibitively complex datasets, requir-
ing advances in machine learning to aid interpretation. As we have 
learned firsthand, manual analysis of these large surveys is operation-
ally difficult, subjective, and sometimes inconsistent. The application 
of deep learning to remotely collect wide-area surveys (greater than 15 
m2) improves the reliability of NTS and provides stakeholders with the 
quantitative data necessary to plan HMA activities. This area reduc-
tion methodology may ultimately be used to help guide ground dem-
ining activities to reduce search area size and drive down HMA costs 
while reducing operational risks.

We present a machine learning case study focused on initial detec-
tion and identification of the widely-used PFM-1 anti-personnel 

Figure 1. Diagram of individual PFM-1 anti-personnel landmine alongside KSF-1 

dispersal cassette (adapted from de Smet et al. 2018).
All figures courtesy of the authors.

landmine (also known as the butterfly mine) as an index example 
of a small, low-metallic scatterable landmine. This type of mine is 
emblematic of a wide-area aerial-mining strategy responsible for both 
a legacy landmine concern and a looming threat of future contamina-
tion, as variants of these mines and their deployment systems remain 
in active service. The PFM-1 is composed of polyethylene plastic that 
presents a particularly difficult challenge to HMA operations.15,16 
Other plastic anti-personnel mines have historically been composed 
of Type IV plastic, differing from the f lexible polyethylene used for 
the PFM-1,15 which was notoriously widely used during the Soviet-
Afghan War (1979–1989). Although some of these mines have dete-
riorated over time, many of the nearly ten million mines remain an 
active threat today due to cold climate preservation.17 These anti-
personnel mines are designed to be ballistically dispersed from 
aluminum KSF-1S cartridges that contain four dispenser racks of 
eighteen mines with seventy-two mines in total (Figure 1). Guided 
by their stabilizing wings, the mines fall gently to the surface where 
they remain scattered in ellipsoidal minefields of 8–10 m x 18–20 
m. While the original PFM-1 design was subsequently updated to 
include a self-destruction timer, modernized PFM-1S type mines fall 
short of the self-destruction criteria in Protocol II of the Convention 
on Prohibitions or Restrictions on the Use of Certain Conventional 
Weapons,18 as studies show that nearly half of PFM-1S mines fail to 
self-detonate upon deployment.19 Many of the original PFM-1 stock-
piles were destroyed by signatories of the APMBC, but considerable 
stockpiles of variants of the PFM-1 mines are thought to remain in 
arsenals of multiple countries.20 Today, Russia hosts the world’s larg-
est stockpile of anti-personnel mines with an estimated 26.5 mil-
lion.21 Moreover, as recently as 2019, the Russian army introduced 
the UMZ-G multipurpose tracked vehicle with minelaying capabili-
ties compatible with PFM-1 bearing cassettes capable of dispersing 
nearly 20,000 PFM-1 type mines per hour.22

Previous drone flights collected over inert PFM-1 mines in proxy 
environments in New York provided a critical proof of concept on the 
use of drones to aerially identify small plastic PFM-1 anti-personnel 
mines from visual, thermal, and multispectral imagery. Baur et al. 
2020 presented a case study where a machine learning workflow was 
developed to automate the detection of these landmines for the first 
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time, resulting in a 71.5% accuracy rate in identifying and locating 
PFM-1 mines from a drone survey.23 This study greatly improves upon 
the previous model by increasing the detection accuracy by over 20%. 
This was accomplished by increasing the volume of training data more 
than three-fold, now including twenty-five 10 x 20 m minefield ortho-
photos in four environments (rubble, sand, and two types of grass 
settings) with a total of 590 PFM-1 mines and 136 KSF casings photo-
graphed, adding negative samples, and a more customizable method of 
splitting orthomosaics.

In this study, we demonstrate that our convolutional neural net-
work (CNN)-based results can be improved with the addition of new 
information from ground verification surveys or the addition of more 
imagery data. We present a specialized tool for detection of the PFM-1 
anti-personnel landmine from RGB (visual) imagery, while providing 

Background

Algorithm 1. Coordinate computation
1: size = 700 (size of each cropped image)
2: overlap = 70 (overlap of cropped images in pixels)
3: cropped_image_name = ‘Grass_RGB_Split1205.tif ’
4: split_x, split_y = 370, 360 (pxl position of obj in cropped image)
5: ortho_easting, ortho_northing = 420000, 4600000 (UTM coords of ortho)
6: x_res, y_res = 0.00644, -0.00644 (m/pxl of orthophoto)
7:
8: (Get col and row of cropped image in ortho)
9: row = two ints following “Split” in cropped_image_name = 12

10: col = two ints following row in cropped_image_name = 5
11:
12: (Get pxl position of obj in respective orthomosaic)
13: ortho_x = split_x + (col *(size-overlap))
14: ortho_y = split_y + (row *(size-overlap))
15:
16: (Get easting and northing coords of obj)
17: obj_casting = ortho_casting + (ortho_x*x_res)
18: obj_northing = ortho_northing + (ortho_y*y_res)
19:
20: (Get latitude and longitude coords of obj - python utm package)
21: obj_lat, obj_lon = utm.to_latlon(obj_easting, obj_northing)

Algorithm 1. Pseudocode outlining coordinate computation of 

object.

proof of concept and laying the foundation for other researchers to 
develop similar deep learning models for detection of other types of 
landmines, UXO, and ERW. In order to expand the capabilities of 
this particular CNN for automated detection of landmines or ERW 
other than the PFM-1, additional datasets of novel minefields would 
be required. With these data, our CNN has the potential to be gener-
alized for automated detection and coordinate return of small objects 
in any raster dataset, including geophysical, RGB, thermal, and mul-
tispectral orthomosaics. Because of the self-learning capability of the 
neural network approach to detection and classification, it is impor-
tant that researchers and field operators work together to develop 
methods for data sharing of aerial images, so the HMA community 
can continue to collectively refine and improve the reliability of deep 
learning methods that are rapidly gaining traction.24

Object Detection. The branch of machine learning used in this 
paper—object detection—involves the general goal of detecting and 
locating predetermined objects in often dynamic and complex envi-
ronments. We used supervised object detection, which involves train-
ing an algorithm (a CNN in our case) to recognize objects by showing 
it a large number of images containing those objects (landmines in 
our case). The algorithm uses this set of images, the training set, to 
learn the distinguishing characteristics of the objects and form a gen-
eralized model in order to detect the objects in different images in the 
future. The algorithm is trained in epochs (rounds), where every image 
in the training set is analyzed and where the algorithm is tuned to be 
able to recognize images like it in the future. After the training of the 
algorithm is complete, a pre-trained model is created with the general-
ized model of the objects encoded in it. The accuracy of this model 
is evaluated using the testing set, containing images that were com-
pletely withheld from the training set. The lack of overlap in the train-
ing and testing sets is designed to ensure that the testing set provides 
an unbiased evaluation of the model, as it will not be trained to detect 
the objects as they appear in the testing set; it will have to rely on the 
generalized model of the objects it obtained from the training set.

The model is evaluated using three relative accuracy scores: preci-
sion (positive predictive value), recall (sensitivity), and F1 (harmonic 
mean). These scores are calculated from our raw evaluation metrics: 
true positives, false positives, and false negatives. Precision is a mea-
sure of the relative amount of positively labeled objects that were cor-
rectly labeled and is calculated using the following formula: 

Formula 1: prec = 
true positive

true positive + false positive

 

Recall is a measure of the relative number of desired objects that were 
positively labeled and is calculated using the following formula: 

Formula 2: rec = 
true positive

true positive + false negative

  

The F1 score is the harmonic mean of precision and recall; it is calcu-
lated using the following formula:25 Formula 3: F1 = 2* 

prec*rec
prec+rec

For our implementation of object detection, we used an actively-
maintained, open-source GitHub repository called Faster region-based 
convolutional neural network (R-CNN).26 An important component of 
the Faster R-CNN architecture, which we modified to achieve a higher 
accuracy with our dataset, is the anchor box. These make it possible 
for the network to locate objects of different scales and different aspect 
ratios quickly and effectively. Instead of scanning an entire image 
using a sliding window of a set size and aspect ratio, nine anchor boxes 
are centered around every sixteenth pixel in the image. The default 
anchor boxes consist of all nine combinations of boxes with a ½:1, 1:1, 
and 2:2 aspect ratio, and boxes with a scale of 8, 16, and 32 multiplied 
by the default base anchor: 16.27
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Methodology
Remote sensing methodology. Additional training and testing 

data were acquired on the Binghamton University campus of an inert 
grass minefield and an inert sand training minefield. In both instances, 
the training minefields consisted of fifteen to thirty PFM-1 landmines 
and their KSF casings scattered throughout a 10 x 20 m region. We 
collected aerial images of the minefield with the DJI Phantom 4 Pro 
drone at a 10 m height and 2 m/s speed with an 80% overlap. The flights 
were planned using the Pix4D capture mission planner. In the grassy 
terrain, the mines were randomly dispersed so that their orientation 
was left to chance. In the sandy terrain, however, we specifically placed 
the mines in six different orientations to increase the robustness of 
our model: horizontal body up, horizontal body down, vertical cap 
up, vertical cap down, horizontal body buried (partial occlusion), and 
horizontal wing buried. We also collected control data over the sandy 
area with no mines to add negative samples (often called negative tem-
plates in remote sensing literature).28 Additional orthomosaic simu-
lated minefield data from rubble, grass, and snowy environments was 
used for this project and had previously been collected with the same 

Figure 2. Illustration of how the CNN assigns coordinates to suspect mines. 

acquisition methods as presented here.23 The addition of more data and 
negative samples greatly improves the accuracy of machine learning 
algorithms, critically decreasing false positives. 

CNN improvements and adjustments. Since the previous 
implementation of a Faster R-CNN to detect PFM-1 landmines, our 
methods have changed and improved dramatically. Baur et al. 2020 
describes the use of Impy to create non-overlapping crops of our 
orthomosaics with at least one object in each photo and correspond-
ing XML files containing the bounding boxes around each object.29 
As in Baur et al. 2020, the Faster R-CNN begins the processing by 
resizing the inputted images to a maximum of 700 px for each axis. 
Therefore, we continue to employ the method of splitting orthomosa-
ics but employ this method very differently, using a script we created 
called ImageSplitter.30 This shift allows for the inclusion of negative 
samples (images with no objects) in our training and testing sets to 
improve our accuracy, provide more precise evaluation metrics, and 
most importantly, easily locate the predicted objects with latitude and 
longitude coordinates.
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Impy, our previous splitting tool, split an image into non-overlap-
ping 1032 x 1032 px crops each containing at least one bounding box. 
The two major limitations of this tool were the difficulty in label-
ing our predicted objects with latitude and longitude coordinates 
and the inability to create negative samples, which were not possible 
using Impy because of the requirement that there must be at least 
one object within each split image. It was difficult for us to locate 
our predicted landmines with coordinates using this tool, because 
the orthomosaics were split in a non-uniform way without the abil-
ity to output the offsets with which the split images relate to the 
orthomosaic as a whole. The location of the split images was created 
based on the location of randomly scattered landmines instead of on 
constant, predetermined offsets.

ImageSplitter solves both of these problems by splitting an image 
into square crops of a predetermined size (we chose 700 x 700 px, as 
larger images would be downsampled by the CNN) with a predeter-
mined percent overlap (we chose 10%) and creating corresponding 

XML annotations. This method allows us to input negative samples as 
training and testing data to boost our accuracy and to obtain a more 
precise evaluation of our model. The predetermined crop size and 
overlap also allows us to determine where each image crop would lie 
in the larger orthomosaic, and therefore allows us to locate the pre-
dicted objects with latitude and longitude as well as easting and north-
ing coordinates. This process is outlined in Algorithm 1 and Figure 2.

After the calculations, the following data are written to a CSV 
(comma separated values) file, which can be read by Google Earth Pro 
or other geographic information systems (GIS) via the object name; 
the corresponding orthomosaic; its predicted confidence score (from 
0 to 1; and its corresponding latitude, longitude, easting, and northing 
coordinates.

All training sessions were conducted over 50 epochs, with the 
Resnet-101 pre-trained model and an 8 px base anchor size with all 
other parameters set to the default values. The train-test splits that 
were used are outlined in the following results section.

Results
The experiments described in the methodology were done on a Dual 

Socket Intel® Xeon® Silver 4114 CPU at 2.20 GHz with 128 GB of RAM 
with a Titan V GPU with 12 GB of RAM. Thirteen experiments were 
executed by manipulating four variables. 

We found that the highest mean F1 scores, regardless of train-test 
split, were achieved with a 700 x 700 px image size with a 10% over-
lap, 8 px base anchor size, and negative samples included. With these 
parameter values, we tested seven different train-test splits. These 
seven splits can be categorized in two ways: randomized splits and 
orthomosaic withholdings. The results from the experiments in each 
categorization give us unique insights. The randomized splits involved 
randomly selecting a percentage of images for the training set, while 
the withheld remainder are used for testing. This type of splitting gives 
us insight into how the model will perform when generating predic-
tions on environments that have been partially included in the train-
ing set in the form of simulated minefields or negative samples. The 

Materials needed to detect and map PFM-1 anti-personnel mines using this method 
include a commercial off-the-shelf (COTS) drone, an RGB visual camera mounted 
on the drone, orthomosaic generation software, and GIS software to analyze and 
visually inspect drone imagery. 

orthomosaic withholdings involve selecting an entire session of drone 
flights to make up the testing set, while the remainder are used for 
training. This train-test split gives us more accurate insight into how 
the model will perform when generating predictions on an environ-
ment that was completely excluded from the training set, but similar 
environments were present. The best randomized split obtained was 
an 80/20 train-test split (80% training, 20% testing) yielding a 0.95 F1 
score for PFM-1 landmines, a 0.89 F1 score for KSF casings, and a 0.92 
mean F1 score. This split is often standard, striking a balance between 
obtaining a robust model through training and a complete evaluation 
of the performance of the model during testing. The best orthomo-
saic withholding was obtained by withholding three orthomosaics we 
collected from a simulated rubble minefield in Chenango Valley State 
Park, NY. This split yielded a 0.86 F1 score for PFM-1 landmines, a 
0.98 F1 score for KSF casings, and a 0.92 mean F1 score.

Using the Pre-Trained Model for PFM-1 Detection
Materials. Materials needed to detect and map PFM-1 anti-per-

sonnel mines using this method include a commercial off-the-shelf 
(COTS) drone, an RGB visual camera mounted on the drone, ortho-
mosaic generation software, and GIS software to analyze and visually 
inspect drone imagery. 

Steps. The first step to implementing our pre-trained model for 
automated detection of PFM-1 anti-personnel mines is collecting UAS 
flight data. Optimal data acquisition involves flying a UAS at a 10 m 
height (the chosen height for optimal resolution and ground cover-
age) with 80% overlap coverage between consecutive traverses and at 
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a slow speed (we used 2 m/s) to minimize blur in the images. Our 
survey size was 10 x 20 m in correspondence with the approximate 
dimensions of PFM-1 minefields, but this variable is up to the discre-
tion of the operator and is often region specific. As the survey size 
increases, the processing time for constructing orthomosaics will also 
increase. The UAV must be equipped with an RGB-capturing camera 
such as the built-in camera on the DJI Phantom 4 or an external sen-
sor such as the Parrot Sequoia multispectral sensor. Additional wave-
lengths, such as thermal or multispectral bands, may also be collected 
and used to cross-reference with visual imagery providing a multipa-
rameter approach to confirm areas of potential surface-laid mines.23 
A multiparameter sensor system would help reduce false positives 
and provide additional physical information (such as temperature 
anomalies for thermal infrared imaging) of suspect mines, adding to 
the robustness of the technique. At this point, while these additional 
wavelengths are useful for cross-referencing with visual imagery, they 
are not suitable for input into the CNN as it is only trained on RGB 
images and is not currently able to recognize PFM-1 landmines in 
other types of imagery.

After data acquisition, the collected photos must be uploaded into 
photogrammetry software for orthomosaic generation. We used 
Pix4DMapper,31 but other software such as DroneDeploy, Agisoft 
Photoscan, and ESRI Drone2Map for ArcGIS are also capable of this 
task. For our trials, the Phantom 4 Pro camera at a 10 m height pro-
duced a resolution of 0.27 cm/px in the orthomosaic with the internal 
drone GPS with the use of ground control points to further improve 
location accuracy. 

The resulting orthomosaic will produce a TIFF file and a corre-
sponding TFW file containing important locational metadata. This 
metadata must include the x and y meters or centimeters per pixel 
resolutions (ours yielded 0.27 cm/px) and the easting and northing 
value of the top-left pixel of the orthomosaic. After the orthomosaics 
have been created, they must be split in order to be input to the CNN 
to generate PFM-1 and KSF-casing coordinate predictions. This will 
be accomplished using the ImageSplitter tool. Once a directory with 
the split orthomosaic has been created, follow the directions in the 
Faster R-CNN repository to execute predictions and output CSV files 
with the predicted coordinates in latitude and longitude, and UTM 
(Universal Transverse Mercator) formats. Notably, the zone for the 
outputted easting and northing coordinates will be the same zone 
present in the TFW files corresponding to the orthomosaics.

After the CNN outputs the coordinates of suspect mines, it is rec-
ommended to convert the CSV file to a shapefile (SHP) and overlay 
the SHP onto the original minefield orthomosaic. This can be accom-
plished using most GIS software and can be done for free using open-
source software like QGIS or Google Earth Pro. An added benefit is 
that these maps may be downloaded for offline use in the field. Next, 
the operator can reduce the number of false negatives and false posi-
tives by visually inspecting the orthomosaic with the overlaid coordi-
nate predictions to confirm or reject the location of the suspect mines, 
and to add any additional unidentified mines (Figure 3). More detailed 
directions on editing the CSV with predicted mines can be found at 
the Demining Research Community’s website (de-mine.com) under 
the Open Source->Instructionals tab. 

While this methodology has a 91.8% accuracy for visible PFM-1 mines in sand, 
grass, and rubble proxy environments, it is important to note the limitations 
in real world situations that would complicate detection using the CNN and RGB 
imagery. 

Figure 3. Edited shapefile overlaid on original orthomosaic with corresponding CSV file.
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Limitations
While this methodology has a 91.8% accuracy for visible PFM-1 

mines in sand, grass, and rubble proxy environments, it is important 
to note the limitations in real world situations that would complicate 
detection using the CNN and RGB imagery. Firstly, PFM-1 mines that 
have been buried by earth surface processes or are completely covered 
in vegetation/obscured from an aerial view are not detectable with 
this algorithm or optical imagery of any kind. Detecting buried mines 
is outside the scope of this paper, but recent studies show other UAS-
based techniques such as thermal sensing show promise for detecting 

shallowly buried mines in dry environments.32,33 Furthermore, there 
may be some visible landmines that the CNN fails to detect, as our 
algorithm is not 100% accurate. Because of this, it is important for 
an operator to double check the orthomosaic for mines. Additionally, 
our algorithm was trained on non-deteriorated model PFM-1 mines, 
so this may introduce a bias in the CNN, and is an avenue for future 
work to include images of decade-old, in-situ PFM-1 mines. Many of 
the mines we trained on were exposed to the outdoors or previously 
buried, being caked with mud or sand as we would expect in nature. 

Safety. Detecting PFM-1 mines remotely from drones 
can reduce the uncertainty associated with finding previously 
unidentified minefields on the ground. Additionally, ortho-
mosaics with identified suspect PFM-1s (Figure 3) will allow 
deminers to visualize where these mines may be before stepping 
onto the minefield and provide them with better situational 
awareness.35 This method acts as an NTS for area reduction to 
assess SHAs or CHAs quickly and safely before investing more 
time and resources with a technical survey.
Cost. One of the major advantages of this method is its 

ability to reduce costs associated with mine detection by con-
straining the SHAs. The software required for this method 
includes our open-source CNN (freely available at de-mine.
com), GIS software for making maps (QGIS software and Google 
Earth Pro software, both free), and orthomosaic generation soft-
ware. For the orthomosaic generation software applications, we 
used Pix4D costing US$4,990 for a lifetime license, or $3,500 
per year with free trial available, but other software applications 
available on the market include ArcGIS Drone2Map, costing 
$1,500 per year (requires ArcGIS). Additionally, open-source 
(free) orthomosaic generation software options exist includ-
ing Meshlab, MicMac, and VisualSFM. The hardware required 
includes a COTS drone with an RGB camera (we used the DJI 
Phantom 4 Pro costing ~$1,600) and a commercial laptop on 
which to run predictions. We used a Lenovo Yoga C740 with a 
10th Generation Intel® Core i5-10210U Processor and 8 GB of 
RAM, which is sufficient to execute predictions, costing ~$850. 
The lowest estimated cost for the materials of this method is 
$2,000 to the highest estimated cost of $20,000. The lowest cost 
assumes using a COTS drone with a built-in camera, relying on 
open-source freeware or free software trials, and excluding the 
cost of purchasing a sufficiently powerful computer on which to 
run the software. The highest cost assumes the operator is buying 
a professional specialized drone and camera while purchasing a 
lifetime license for a photogrammetry software application.

Time. Collection of aerial drone footage takes approxi-
mately 3.5 minutes for a 200 m2 minefield, covering roughly 
1,143 m2 in 20 minutes before the battery needs to be replaced 
or recharged for a typical DJI Phantom 3, assuming the 
drone is f lying at a 10 m height, at 2 m/s, with 80% overlap.16 
Orthomosaic generation takes about 1 hour and 17 minutes 
for a 200 m2 area on a 2.7 GHz Dual-Core Intel® Core i5 pro-
cessor with 8 GB of RAM. Generating predictions using the 
CNN takes about 0.04 seconds per cropped image on a Dual 
Socket Intel® Xeon® Silver 4114 CPU at 2.20 GHz with 128 GB 
of RAM with a Titan V GPU with 12 GB of RAM. Generating 
predictions takes about 6 seconds per cropped image using 
the Lenovo® Yoga C740 with a 10th Generation Intel® Core 
i5-10210U Processor and 8 GB of RAM. Manually verifying the 
CNN mine predictions and labeling any false negatives in QGIS 
takes approximately 10 minutes for 30 objects in a 10 x 20 m 
minefield. In total, the estimated time required for this meth-
odology from start to producing field maps is 2 days. The first 
day will be used for data acquisition and drone operation, 
while the second day will be used for orthophoto generation, 
CNN predictions, and creating field-ready maps.
Accessibility. Our method allows for remote assess-

ment in regions that can be physically inaccessible to survey, but 
we suggest the operator retains line of sight of the UAS at all times. 
In rugged terrain with large elevation shifts, mission planning 
software is necessary to preprogram global naviation satellite sys-
tem (GNSS)-guided autonomous missions where waypoints are 
used in navigation to maintain constant altitude above ground 
level (AGL); alternatively, a laser altimeter can be used to maintain 
constant altitude AGL. Our method will have limited success in 
highly-vegetated regions and in detecting mines that are occluded 
in the RGB wavelengths of light, including buried minefields. 

How will pairing drones and this CNN
improve demining practices?



THE JOURNAL OF CONVENTIONAL WEAPONS DESTRUCTION144

Bigger Picture

Additionally, over time, as the PFM-1 mines become more deterio-
rated, the probability that these mines will have either already det-
onated due to reaching their cumulative triggering pressure or will 
have experienced a casing breach resulting in neutralization or dis-
armament increases.34 However, some PFM-1 mines from the Soviet-
Afghan War remain active and present a particularly difficult target to 
identify, since our algorithm is tailored to identify more recently-laid 
mines. In regard to detecting half-buried or half exposed mines, this 
CNN was provided minimal training data for these types of images 
and was only able to detect one of twenty-six half buried mines in the 
testing orthomosaic. While this number is low, it is also promising 
in that the CNN was able to successfully extrapolate from the fully 
exposed mines and is an avenue for future work that will dramatically 
improve as the training images of partially buried mines increases. 
Overall, the main limitations of this method are in detecting PFM-1 
mines that are not visible on the surface, and lack of training data 

from real world minefields which is logistically difficult to obtain and 
an avenue for future work. 

Our methodology is intended to assist and augment current mine 
detection practices, not replace them. However, employing this meth-
odology can improve the safety of operators; increase the efficiency, 
speed, and accuracy of detection; and reduce costs for conditions 
where this method is effective.

This method has potential applications for detecting PFM-1 anti-
personnel mines in confirmed hazardous areas (CHAs) and SHAs con-
tributing to a NTS for area reduction and partial detection without 
deploying personnel on the ground. Using our method in this fash-
ion can be extremely helpful, as even detecting a single landmine in a 
region will provide critical information for mapping areas of contami-
nation and help decision makers prioritize areas based on the contami-
nation density. 

Conclusion
Recent advances in machine learning, miniaturization of sen-

sors, and the commercialization of drones are paving the way for the 
future of automated mine detection. This study couples these pow-
erful technologies by training a CNN on UAV-based minefield data, 
producing a model that can identify the PFM-1 anti-personnel mine 
from a drone survey with 91.8% accuracy and can provide demin-
ers field-ready maps with identified mine locations. By following the 
steps outlined in this paper, deminers can successfully implement 
this CNN to automate detection of PFM-1 anti-personnel mines. This 
CNN can be adapted to automate detection of a range of landmines, 
cluster munitions, and other ERW, given adequate training and test-
ing data. Our future work will involve field testing this method in 
active minefields to better understand the environmental parameters 
that may influence this methodology. While this methodology is not 
meant to replace current demining practices, it is capable of augment-
ing these practices by providing a safe, low-cost, time-efficient, and 
accurate detection method to add to the demining toolbox for CHAs 
and SHAs. 

Our methodology is intended to assist and augment current mine detection practices, not 
replace them. However, employing this methodology can improve the safety of operators, 
increase the efficiency, speed, and accuracy of detection, and reduce costs for conditions 
where this method is effective.
This method has potential applications for detecting PFM-1 anti-personnel mines in both 

confirmed hazardous areas (CHAs) and SHAs contributing to a NTS for area reduction and 
partial detection without deploying personnel on the ground. Using our method in this 
fashion can be extremely helpful as even detecting a single landmine in a region will 
provide critical information for mapping areas of contamination and help decision makers 
prioritize areas based on the contamination density.

Data availability statement. The Demining Research Com-
munity is a group of interdisciplinary scientists with backgrounds in 
remote sensing, geophysics, computer science, and archaeology whose 
mission is to research, develop, and field test cutting-edge sensors and 
platforms to improve current demining technologies. We support 
open-access research and data for the betterment of the mine action 
community. Our minefield datasets (around 160 MB each), source 
code, and previous publications on mine detection are available at the 
Demining Research Community’s website and at the Open Repository 
at Binghamton University.36–38 
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