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For over a decade, the widespread use of explosive 
weapons by all sides in the Syrian conflict has been 
well documented by a litany of public sources. Many 

of these explosive munitions fail to detonate as intended, 
thereby becoming unexploded ordnance (UXO) that 
threaten post-conflict recovery. To begin the process of 
clearing these explosive remnants of war (ERW), desk 
studies/non-technical studies can be utilized to ini-
tially assess the concentration and distribution of 
explosive weapons across a conflict zone, which in 
turn suggest the risk of UXO in an area. Traditional 
methods in non-technical surveys (NTS) focus on 
unweighted conflict intensity scores (counting 
the number of events) or after-the-fact munition 
detonations to determine current contamination.1 
The authors propose a novel, nuanced approach 
to counting the number of munitions per event, 
not just the number of events. This new open-
source weighted estimate (OSWE) method con-
tains higher-fidelity data for analysis with more 
specific coverage across a larger geographic area 
than prior models. Using crucial and corroborated 
open-source investigation workflows, the authors 
created a nationwide assessment paradigm. In 
comparison with older models, we anticipate that 
the OSWE method of estimating UXO concentra-
tion is more useful across a greater range of geo-
graphic scopes through its leverage of big data, 
weighted nature, and data selection for events 
likely to generate UXO. The OSWE method also 
produces an estimate for UXO in Syria (a minimum 
of 100,000 nationwide). These are important find-
ings, as more accurate estimates can be repli-
cated across contexts, including in Ukraine. 

Destroyed buildings in Homs, Syria.
Photo courtesy of Adobe Stockphotos.
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Introduction 
 Although media attention has waned, the Syrian conflict contin-

ues, albeit on a smaller scale.2 A nationwide cease-fire announced 
in March 2020 has largely held, leading to minimal exchange of 
territory among the major warring factions. Despite relatively con-
stant areas of control, the use of explosive weapons and the deto-
nation of UXO is a weekly occurrence. These detonations happen 
across the country regardless of which faction controls territories 
and often at the cost of civilian life and limb.

In Syria, clearance of explosive contaminants is disrupted by a 
slew of variables, namely instabilities in project funding, a volatile 
security environment, a prohibitive sanctions regime, uncoopera-
tive local partners, and security access challenges of remote con-
tamination assessment. Despite these complicating variables, this 
paper will specifically focus on the initial stages of the explosive 
ordnance (EO) clearance process by using open-source data on the 
conflict in Syria to enhance an NTS. This approach is intended to 
assist in the prioritization of key areas.

In 2011, many Syrian civilians took to the streets, calling for 
reform as part of a popular national protest inspired by other 
mass mobilizations collectively described as the Arab Uprisings.  

An ensuing security crackdown on peaceful protesters prompted 
the protest movement to call for the overthrow of the Syrian gov-
ernment led by President Bashar al-Assad.3 Further crackdowns 
led to defections from the armed forces of Syria, and armed dem-
onstrators shooting back at military forces sent to quell riots. This 
cycle escalated into open conflict, occurring for over a decade with 
four major territory-holding factions vying for control. Two dozen 
more international armed forces have also engaged in Syria, mostly 
through airstrikes and artillery strikes. 

Syria has had stable frontlines since the spring of 2020, when a 
cease-fire was brokered between the government of Syria and the 
Turkish-backed opposition in Syria’s northwest. While no new 
major offensive has occurred since then—itself a mark of the cease-
fire’s conflict resolution success—the term “cease-fire” is a misno-
mer, as indirect conflict and occasional clashes are still reported 
daily in Syria. Syria’s northwest region, where frontlines between 
the opposition and the government meet, averages at least 350 
conflict events per month as recorded by the Armed Conflict and 
Location Event Database (ACLED).

Literature Review
Since World War II, UXO have traditionally been detected 

on the ground by clearance teams who detect potential hazards, 
excavate, and determine if the object is a UXO.4 The prevailing 
approaches used in humanitarian mine action (HMA) employ 
either magnetometers or terrestrial electromagnetic induction 
(EMI) systems.5 Although these have been validated as one of the 
most dependable geophysical methods for HMA, they have sev-
eral weaknesses, including high false-positive rates in areas with 
metallic clutter,6 time and labor intensiveness,7 and operator vul-
nerability.8 These factors, along with operator experience and the 
technological capability of mine-detection technology, impact the 
rate of mine clearance.9 

Newer approaches conduct automated surveying by remote 
sensing via magnetometers deployed on unmanned aerial vehicles 
(UAVs) to scan wider areas more rapidly and safely.10 This reduces 
both financial costs in terms of information-gathering and risks 
to personnel and equipment related to accidental detonation dur-
ing on-site detection.11 Although this is a useful preliminary tool 
for reducing the geographical expanse and cost of ground-based 
surveys employed in HMA, UAVs are generally limited by weather 
and environmental conditions,12 though novel approaches such as 
using multi-sensor configurations attempt to overcome this.13 UAV 
surveying also requires analyzing large, complex datasets, relying 
heavily upon advances in machine learning (ML) to help inter-
pret the data.14 Background noise in the data is another obstacle.15 
Recent work using ML to detect and classify ordnance shows prom-
ise,16 but it is still in early phases of testing and implementation.

Given these challenges, many HMA organizations have shifted 
efforts toward desk-based, data-driven approaches such as NTS.17 
Such approaches offer preliminary assessments to detect areas of 
interest to prioritize technical on-the-ground surveying.18 The 
inherent difficulty in UXO detection and clearance in active con-
flict zones19 can be augmented using these methods, given the risk 
of surveying areas that are traditionally considered too dangerous 
for intervention (i.e., along the frontlines).20 Recent efforts dem-
onstrate the value of using open-source investigation (OSINV) for 
such preassessments. An innovative approach developed by The 
Carter Center in 2019 optimizes existing open-source data on con-
flict events in Syria (ACLED and The Carter Center data collections) 
to produce heat maps for high levels of explosive weapons use and 
therefore potential UXO contamination.21 The HALO Trust, one 
of the world’s preeminent demining organizations, recently joined 
forces with Esri (the organization that develops ArcGIS) to map in 
real time the presence of UXO and damage to residential areas or 
infrastructure as the Russian invasion of Ukraine unfolds.22 This 
includes efforts to automate mapping processes, where experts can 
filter through a stream of evidence instead of manually searching 
the internet for news articles and social media.23 Although this 
offers the potential to document UXO presence in current and 
future conflicts, munitions exist from as far back as World War I.24 
The utility of The Carter Center’s approach is evident in the poten-
tial to make use of decades of existing data,25 in combination with 
current OSINV methods to address ERW.
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Munitions Category Sample Set  
Event Count

Sample Set  
Average (Estimate)

Air-Launched 
Munitions 6,718 7.78 (8)

Ground-Launched 
Munitions 6,250 9.96 (10)

Landmines/UXO/IED 5,549 1.10 (1)

Miscellaneous Other 214 4.05 (4)

Methodology and Models

Explosive contaminants are a large set of deadly munitions or 
devices that include landmines and improvised explosives devices 
(IEDs) as well as ERW. ERW as a classification includes both UXO 
and abandoned explosive ordnance (AXO); the former fail to deto-
nate as intended and the latter are left behind or forgotten about. 

Two core databases of conflict events inform this study. The first 
is ACLED, which has coverage dating back to early 2017 for the 
whole of Syria. The second is a unique dataset collected by The 
Carter Center dating to 2012. Both datasets use a similar sourcing 
methodology based on open-source collection and multi-user veri-
fication. Key sources for both sets include the Syrian Observatory 
for Human Rights (SOHR)—a research network of on-the-ground 
journalists and activists led by Rami Abdulrahman,26 conflict 
event information posted by trusted accounts on Twitter, local 
newspapers, and video content shared on YouTube or Telegram, 
with The Carter Center more often leveraging the latter. These con-
flict events in both datasets are classified by location, date, event 
type, and a qualitative description of the event in plain writing. 

The first and primary model we present is the OSWE model. To 
create this model, raw data from ACLED and The Carter Center are 
amended to be more optimally useful for desk study of UXO con-
centration.27 ACLED combines multiple explosive events (includ-
ing multiple event types) in one location on one day into a single 
event, labeled as only the event type considered to be the most 
extreme. For example, an event that had artillery shelling, aerial 
bombardment, and armed clashes would be treated as one event 
marked as aerial bombardment. The additional event types are 
then described in the qualitative description column. See Figure 1 
for a visual explaining this decoupling.

The parsing of events helps to more accurately detect potential 
areas and density of UXO contamination. In partnership with 
Microsoft, we deploy a natural language processing technique based 
on the BERT model28 to efficiently and broadly separate ACLED-
reported events into constituent conflict events.29 We then begin by 
filtering data from both ACLED and The Carter Center for conflict 
events that deploy explosive munitions, namely aerial bombard-
ment, shelling, IEDs, landmines, and reports of other UXO. 

After selecting these event types, the question of how to weigh 
different event types persists. A key benefit of The Carter Center’s 
2012–2017 data is that it contains occasional mention of munition 
count estimates from on-the-ground reports30 or in some cases, 
explicit counting of munitions from video footage used as sourc-
ing material.31 After cleaning the data further to specify munition 

Carter Center Decoupled Events

Event type Munitions Type

Aerial Bombardment Air Launched

Shelling Ground Launched

Clashes Excluded

ACLED Input Event

”On 21 May 2019…armed clashes…”

Figure 1. Visual description of 
The Carter Center’s process for 
decoupling data from ACLED.
All graphics courtesy of the authors. 

counts across the data in which numbers are included, we then 
use each munition category (air-launched, ground-launched, IED/
UXO/landmine, and miscellaneous other ) to create an estimate for 
each. The number of events that inform each of these estimates, as 
well as the mean of each sample used for each category are included 
in Table 1. 

Next, for comparison, we create two other models derived from 
the same underlying dataset at the same scale. The first of these 
models is the conflict intensity model, traditionally the default 
approach for United Nations agencies and others alike.33 This 
model takes underlying conflict event data of all types (inclusive 
of clashes, sniper fire, etc.), and uses these unweighted values to 
assess the intensity of fighting over the course of a war in a geo-
spatially specific manner. The final model, the UXO detonation 
model, pulls from conflict event data of recorded UXO detona-
tion, excluding all other events. This is done through qualitative 
filtering of events based on the notes/description column of the 
data, selecting for events explicitly mentioning unexploded muni-
tions, munitions exploding from previous fighting, and explosives 
of unknown origin. 

We then run all three models at localized point-of-interest areas 
in Syria, which are based on an intentionally and conflict-relevant 
amended version of the United Nations Office for the Coordination 
of Humanitarian Affairs’ (UNOCHA) geolocated populated places 
data.34 The amendments are minor but incorporate several key 
areas such as critical infrastructure or military locations in addi-
tion to the civilian points of the UNOCHA dataset. We then geo-
processed latitude and longitude coordinates for territorial control 
points using ArcGIS’s Thiessen projection’s function,35 thereby cre-
ating polygons around each unique spatial point to estimate each 
location’s geographic area.36 Using a 1:1 spatial join, the results 

Table 1. Open-Source Weighted Estimate Model Sample 
Set Detail.
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from each of the three distinct models are added to the Thiessen 
shapefile, providing a sum of munitions estimates for the OSWE 
model and a count of events for the other models.

The results for each of the three UXO data results for potential 
areas of contamination are normalized by the estimated polygon 

shape area for each location and then selected for high and low con-
centration estimates. These estimates are then assessed for com-
parative analysis of differences between the three models at a local 
(i.e., populated places) scale. Findings based on these comparisons 
are presented and discussed next.

Data Findings 

Utilizing the OSWE model permits interpolating estimates for 
missing data of munitions counts, thus enabling us to extrapolate 
closer estimates of likely explosives munitions use across Syria.37 
Notably, this nets an estimate of well over one million explosive 
munitions deployed in Syria by mid-2021. At a ten percent muni-
tions detonation failure rate,38 over 100,000 munitions need clear-
ance nationwide, though this number is likely much higher.

Each model results in different spatial distribution of likely UXO 
concentration; they are compared in Figure 2, indicating OSWE, 
conflict intensity, and UXO detonation models from left to right.

The OSWE model (left) has much higher concentration in west-
ern Syria. The conflict intensity model (center) has a bit more of a 
dispersed geospatial concentration. Finally, the UXO detonation 
model (right) is heavily skewed toward southern Syria. Viewing 
these models at a national scale is not as meaningful as getting into 
a location-based specificity, so the authors developed an analytical 
framework based on high levels of local concentration of explosive 
munitions use, conflict events, and UXO detonations, respectively.

Using these three models to assess local contamination, we 
then select for what we refer to as high-UXO-density locations 
(HUDLs)—locations that score one standard deviation above 
the model’s mean point value. These communities are those in 
which each model presents a location of imperative UXO clean-
ing operations.

The three models identified different numbers of HUDLs based 
on levels of variance inherent within the models. The OSWE 
method pinpointed the broadest number of HUDLs (126), given 
the disproportionate level of explosives munitions use within a 
broad swath of key locations. Many of these locations endured 
long-term active frontlines or were under heavy siege for many 

months. The UXO detonation model determined the lowest num-
ber of HUDLs (eighteen), in large part due to the comparatively 
low level of data inputs.

While these three models bear some overlap in HUDL selec-
tion (see Figure 3), the findings suggest that each approach has a 
distinct usefulness or aim, with substantial overlap between the 
OSWE method and a contemporary conflict intensity method. 

All three models are derived from data with significant correla-
tion (and indeed perhaps some codeterminance if not compared 
and analyzed more intimately). The breakdown of locations identi-
fied by these models is shown in Table 2 (next page).

Notably, Model A (OSWE) and B (conflict intensity) had the 
most overlap with each other, sharing the majority of their identi-
fied HUDLs. The conflict intensity model has the most unique loca-
tions identified, a factor that we attribute to the broadness of this 
model’s approach as we describe earlier in this paper.

Figure 2. Nationwide heatmaps of the OSWE model (left), conflict intensity model (center), and UXO detonation 
model (right).

Figure 3. Visualization 
of shared HUDL 
identification by all 
three models. Nodes 
are for locations 
and edges are for 
selection in the 
associated 
model.
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Analysis and Implications 

Table 3. HUDL count by faction control.

Table 4. OSWE model detection of UXO by faction.

Model Shared with Model A 
(percentage)

Shared with Model B 
(percentage)

Shared with Model C 
(percentage)

Unique Locations 
Idenfied (percentage)

Model A - OSWE - 112 (75%) 11 (61%) 14 (11%)

Model B - Conflict Intensity 112 (89%) - 15 (83%) 34 (23%)

Model D - UXO Detonation 11 (9%) 15 (10%) - 3 (17%)

Model
Count of HUDLs 

Government-Held 
(percentage)

Count of HUDLs 
Opposition-Held 

(percentage)

Count of HUDLs SDF-
Held (percentage)

Count of HUDLs Joint 
Government & SDF-Held 

(percentage)

Model A - OSWE 117 (92%) 6 (5%) 2 (2%) 1 (1%)

Model B - Conflict Intensity 129 (86%) 9 (6%) 6 (4%) 4 (4%)

Model D - UXO Detonation 10 (56%) 5 (28%) 0 (0%) 3 (16%)

Count of HUDLs 
(percentage)

Total Territory Held in 
SQKM (percentage)

Estimated Count of 
UXO (percentage)

UXO Density in UXO 
per SQKM

Government-Held 117 (92%) 118,869 (64%) 757,689 (79%) 6.4

Opposition-Held 6 (5%) 11,174 (6%) 145,369 (15%) 13.0

SDF-Held 2 (2%) 46,087 (25%) 33,146 (3%) 0.7

Joint Government & SDF-Held 1 (<1%) 2,939 (2%) 24,643 (3%) 8.4

US-Held 0 (0%) 6,759 (3%) 14 (<1%) 0.0

We conclude that the OSWE method has more optimal, precise, 
and expansive coverage of potential UXO contamination for cur-
rent, future, and past conflicts. This is in large part due to the lever-
age of weighted big data approaches that underlie the desk study 
method. This gives our approach considerable leverage for assess-
ing needs and directing resources in any high-level armed conflict 
where explosive munitions are and have been used at scale. 

It is also crucial to note that this is only the tip of the OSWE 
iceberg, as other sources for estimate weights can be applied 
across contexts. In the model deployed for this desk survey, we 
base estimates around munitions category (air-launched, ground-
launched, etc.), whereas munitions type (mortar, rocket artillery, 
barrel bomb, airplane-launched, etc.) will provide a more granu-
late weighted estimate. Other methods of interpolation, such as 
frontline density, era of conflict, or initiating actor could allow for 
a compounding weighted estimate that may provide a more rigor-
ous insight in future models. 

UXO contamination is an issue that crosses frontlines and polit-
ical divides, affecting large portions of Syria. Of the communities 
at high risk identified through the OSWE method, Table 3 identi-
fies the breakdown of which actors control the most likely HUDLs 
in Syria.

Perhaps unsurprising to those watching Syria closely, the gov-
ernment of Syria controls the lion’s share of HUDLs in all mod-
els, in no small part due to its control over most of the territory of 
Syria. However, this still accounts for a disproportionate share of 
explosives munitions use, given that the government holds territo-
rial claim over about fifty-five percent of all point locations tracked 
by The Carter Center and about sixty-four percent of the total ter-
ritory. Part of this high concentration of likely UXO contamination 
in government-held territory has to do with the protracted conflict 
and heavy besiegement of many territories retaken by the govern-
ment, especially between 2017 and 2018. 

Another crucial component of the OSWE method is that in addi-
tion to providing a count and percentage of HUDLs held by each 
territory-holding actor in Syria, it allows for an estimated count of 
munitions within each actor’s held territory. Table 4 identifies this 
breakdown by each of the three major actors. 

Using the results from the OSWE model helps assess contami-
nation for areas controlled by different actors in Syria, allowing 
HMA organizations with access to only one actor to assess needs 
across their accessible territory. Table 3 indicates that the gov-
ernment of Syria controls many HUDLs through all three model 
approaches; the OSWE can give useful insights about the density 

Table 2. UXO estimate model HUDL overlap.
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Table 5. Model comparison, filtered by location 2+ degrees from a frontline.

Model Count of HUDLs (percentage) Primary HUDL Holder, by Count 
(percentage)

Primary Governorate, by Count 
(percentage)

Model A - OSWE 100 (79%) Government, 117 (93%) Aleppo, 57 (45%)

Model B - Conflict Intensity 92 (61%) Government, 129 (86%) Aleppo, 70 (47%)

Model D - UXO Detonation 18 (100%) Government, 10 (56%) Aleppo, 5 (28%)

of explosive weapons use and likely UXO contamination that fol-
lows. Using this approach, we find that the territory holder with 
the highest likely UXO density is the armed opposition, who have 
almost twice the likely level of contamination as the government 
of Syria on the aggregate. Notably, the opposition only controls 
about six percent of all territory by area and about sixteen percent 
of all settled locations.	

One final example assessing HUDLs and areas of control by 
the major factions in Syria’s war has to do with the frontlines 
in Syria. A major hurdle identified both in the literature and in 
conversations we had with HMA personnel pertains to the afore-
mentioned security risks associated with frontlines. Filtering 
these three models for locations that are at least fifteen km from 
a frontline allows for selection of both high-density areas for 
clearance and those that are more accessible to technical sur-
vey and clearance teams. This can be accomplished by using 
The Carter Center’s previously discussed geolocated dataset on 
territorial control in Syria. The previously described Thiessen 
polygons are created by estimated midpoints between neighbor-
ing locations. Dissolving these point-centered polygons based 

on an aggregated feature, in this case “armed group in control,” 
allows for creating larger polygons that denote areas of control 
for each month in the conf lict, resulting in a highly accurate and 
dynamic estimate of frontline locations. Using the proximity 
function, the distance from each location point to the boundary 
of neighboring polygons controlled by opposing armed factions 
allows for estimating distance from the frontline, or more than 
one in cases where multiple fronts are colliding. In turn, it is 
possible to assess how geographically concentrated locations are 
within conf lict zones. 

See Table 5 for information about how each of these three models 
interacts with this filter for HUDLs at least fifteen km away from a 
frontline.39 As of June 2022, 5,127 locations (points of control) are 
at least fifteen km from a frontline (or sixty-three percent of Syria). 

Combining such analysis with the OSWE method illustrates 
how impactful such a method could be for those directing the dif-
ficult work of technical surveys and eventual UXO and mine clear-
ance projects while safeguarding the safety of their staff. 

Conclusion

It is crucial to note that this methodology is still in development. 
This paper builds upon a few years of data collection and analy-
sis, but The Carter Center is continuing to hone this methodology. 
We aim to ensure that the method is easily replicable in other con-
texts, and indeed a similar approach is now being used by others in 
the field today. As noted, HALO is partnering with Esri to utilize 
open-source data to anticipate UXO clearance needs in Ukraine as 
the war there unfolds. Development of this theoretical desk study 
method, as with any method for determining likely UXO density 
and clearance need, is directly connected to saving the lives of 
civilians who have already endured a brutal conflict.

The Carter Center is expressly interested in working with HMA 
organizations to continue developing methods to improve and 
make the explosives clearance process more feasible and efficient. 
Relatedly, this method could be tested in the future against UXO 
clearance data—checking the newer OSWE method against legacy 
desk study approaches. With access to that responding data, ana-
lysts will be able to run tests measuring direct applicability of this 
method to continue to assess biases in the data and its methods. 

See endnotes page 111

The views expressed in this article do not represent the authors’ 
current or previous employers.
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Mapping Unexploded Ordnance in Syria: Harnessing the Power 
of Open-Source Information by Stall, Hudson, Leendertse, Prasa-
d,McNaboe, Shabb, and Robinson  
[ from page 88 ]

1.	 As a data abstraction of UXO detonation data as detection 
model, some UXO clearing organizations also use models 
based on injuries or fatalities rated to UXO detonation events. 
This report will not cover this method, but Carter Center staff 
did run the model for testing. 

2.	 The Carter Center continues to release quarterly conflict sum-
maries on the war in Syria, which can be read on the Conflict 
Resolution Program’s departmental webpage here: https://bit.
ly/3amZjiq. 

3.	 Mona Yacoubian, “Syria Timeline: Since the Uprising Against 
Assad”, United States Institute of Peace, January 1, 2021, ac-
cessed June 16, 2022, https://bit.ly/3atsAZ2. 

4.	 MacDonald 2004. 
5.	 Baur et al. 2021; MacDonald 2004. 
6.	 For example, shrapnel, soup cans, bottle tops, etc. (MacDon-

ald 2004). See also, Beran 2013 and Bauer et al. 2021. 
7.	 This is particularly the case in challenging terrain. 
8.	 Baur et al. 2021. The challenge in distinguishing actual haz-

ardous ordnance from harmless metallic clutter means that 
operators then must balance between two competing ob-
jectives: tuning detectors so precisely that they result in very 
high levels of false positives, or not fine-tuned enough and 
missing real UXOs (Beran 2013).; MacDonald 2004. Traditional 
metal detectors also cannot capture an object’s size, shape, or 
material properties, though innovation is ongoing in the field 
to overcome this limitation. For example, Wilson and Ledger 
(2021) explore the use of magnetic polarizability tensor (MPT). 
The balancing results in a “receiving operating characteristics” 
(ROC) curve, which estimates the probability of false alarms 
(MacDonald 2004). Previous estimates have shown that the 
rate of false alarms to true UXO detection is 99 to 1. Alternate 
methods include sifting layer by layer of an entire area, which 
has several weaknesses such as the high cost, endangerment 
to wildlife, and environmental destruction. 

9.	 Baur et al. 2021; Nikulin et al. spring/summer 2020. 
10.	 Remote sensing using UAVs allows for quick and efficient 

low-altitude scans of expansive areas. 
11.	 Kolster et al. 2022. 
12.	 Myers and Lathrop 2021.
13.	 Myers and Lathrop 2021; Kolster et al. 2022. Multi-sensor sys-

tems have traditionally been land-based, and they are very 
costly to manufacture and burdensome to transport to remote 
locations.

14.	 Baur et al. 2021.For instance, multi-sensor configurations use 
ML to assess weather and terrain conditions to inform which 
on-board geophysical instrument(s) would produce the most 
precise landmine detection (Myers and Lanthrop 2021).

15.	 Nikulin et al. spring/summer 2020. Available at: https://com-
mons.lib.jmu.edu/cisr-journal/vol24/iss1/13/ 
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