October 2011

Landmines in Libya

Colin King
Fenix-Insight Ltd.

Follow this and additional works at: http://commons.lib.jmu.edu/cisr-journal

Part of the Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation
Available at: http://commons.lib.jmu.edu/cisr-journal/vol15/iss3/13

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
Landmines in Libya

Landmines are an unfortunate part of Libya’s past and present. As such, the author discusses the various types of mines that have been found so far, providing a technical overview of each. With his landmine analysis, King warns of the difficulties that lie ahead as deminers begin to address the problem.

by Colin King [Fenix-Insight Ltd.]

Until recently, the primary threat from mines in Libya originated from the Western Desert Campaigns of the Second World War (June 1940–February 1943) and a series of conflicts with Chad between 1978 and 1987. During the recent civil war, it emerged that Libya also has substantial landmine stockpiles, and that both anti-personnel and anti-tank mines had been laid during the hostilities. In addition to the common Cold War legacy weapons found in many countries, there have been some unexpected finds, including landmine types of which little was previously known.

What follows is a brief technical overview of the mines and mine threats recently found in Libya, including some of the questions raised by these findings.

Type 84

Perhaps the most significant recent find is the Chinese Type 84. For many years those working in demining knew that Type 84 variant incorporates a self-destruct feature but, if so, it has clearly failed in a number of cases. As the explosive-ordnance disposal community has learned over the years, this is hardly a surprise; so-called fuzes not only fail with alarming regularity, but also fuzes not only fail with alarming regularity, but also

Although not a true minimum-metal mine, the metal content of the TAB-1 is low, with the only metallic components being the mild steel firing pin (0.36 g) and the aluminum detonator capsule (estimated at 0.15 g). The main charge is approximately 60 g of Pentolite (PETN/TNT mixture). There is also a small booster pellet, which appears to be PETN, in the base of the fuze. The simple mechanical fuze screws into the central well of the mine body and is actuated by a pressure plate to allow the fuze to re-set after being subjected to overpressure.

Type 72 SP

The Chinese Type 72 SP metallic AT mine was featured in numerous videos from Libya, with large stocks held in Benghazi and probably elsewhere. The Type 72 (one of several Chinese mines with this designation) is externally similar to the Russian TM-46, but uses a completely different fuze, which incorporates an effective blast-resistant mechanism. It also has a spring-loaded pressure plate to allow the fuze to re-set after being subjected to overpressure.

The TAB-1 is a Brazilian AP blast mine that has already been responsible for a number of casualties in Libya. It was also used in Ecuador and Peru, but little was known of its make-up until it was examined recently.

Unlike the M3, the M3A1 incorporates two auxiliary fuse wells for booby trapping; one in the side and one in the base. This capability is particularly relevant given that compatible anti-handling devices have also been seen in Libya. Even more worrying is the prospect that, without the pressure-plate assembly fitted, either of these mines could be initiated by the weight of a person, thereby converting the AT mine into an oversized AP mine.

The Belgian M3 is a minimum-metal mine with a powerful 3 kg charge of TNT, RDX and aluminum.

Use of the SP suffix was previously unknown, and this is believed to refer to an export version for tropical use. In this variant, sand-colored paint had been sprayed over the olive green used on most Chinese mines; this is clearly visible around the internal voids and wells. There is a large auxiliary fuze well in the base for booby trapping, but there have been no sightings of the anti-handling devices used with this mine.

Published by JMU Scholarly Commons, 2013

Published content: King: Landmines in Libya

Notes from the field | The Journal of ERW and mine action | Fall 2011 | 15.3

Imperial College London

King: Landmines in Libya
The NR 413 fragmentation mine can be initiated by any of four tripwires.

Sectioning a live NR 413 AP mine for examination.

Other Mines

Other mines present in Libya include the Belgian NR 413 stake mine and NR 442 bounding mine, both of which are AP fragmentation weapons with significant ranges.

The NR 442 is normally buried and uses a pressure fuze to initiate a propellant charge; this fires the mine body out of the ground before detonation occurs at a height of about a meter. The mine contains 2,500 steel fragments that are lethal within 25 m but can cause injury or death at far greater ranges.

The NR 413 is normally mounted on a steel stake and initiated by any of four tripwires. At a time when the tripwire threat in most countries has virtually disappeared, clearance teams in Libya may once again be forced to adopt laborious and time-consuming tripwire search procedures in areas where this mine is suspected.

The NR 109 trip flare, also present in Libya, is easily confused with the NR 413. Despite the similarity of the fuze and body, the components of these two devices have different threads and are not interchangeable.

Two other mines, neither of which was previously associated with Libya, have also been found in Benghazi. Both the Yugoslav TMA-5 and the Czech PT Mi-Ba-III are minimum-metal AT blast mines that can be difficult to detect. These are large mines capable of immobilizing main battle tanks, and would completely destroy any civilian vehicle.

The PT Mi-Ba-III fuze incorporates a cocked striker, meaning that the mechanism is spring-loaded and therefore capable of functioning at any time. The plastic collar retaining the striker is vulnerable to deterioration in hot dry conditions, making this mine extremely dangerous to handle. This mine was believed to have been responsible for a number of casualties during the First Gulf War (1990–1991) and is definitely a blow-in-place item.

Conclusion

The mine threat in Libya could create a significant challenge for deminers, with a combination of unrecorded minefields, difficult detection, the presence of tripwires and the potential deterioration of fuze mechanisms. Demining nongovernmental organizations have already begun clearance operations with the United Nations Mine Action Service Joint Mine Action Coordination Team, working to coordinate operations. In addition to the standard process of survey, minefield delineation and clearance, a major stockpile destruction program will also be needed. Sadly, despite widespread adoption of the AP Mine Ban Convention, mines have once again played a role in modern conflict. They bring with them the dangerous, costly and laborious process of demining, along with the disheartening prospect of long-term socio- economic impact on the communities where they are found. See endnotes page 83.

Kabul City Clearance Project

After decades of conflict in Afghanistan, the Kabul City Clearance Project is addressing the dangers of mine and unexploded ordnance that pose a threat to the safety and livelihood of Kabul’s expanding urban population. KCCP is an 18-month collaborative project that utilizes the resources of Afgham Technical Consultants, a local clearance nongovernmental organization, to implement a mine-clearance plan in 36 impacted communities.

Kabul City’s History of Contamination

Kabul City has experienced prolonged and intense conflict resulting from:

• The Russian invasion and its subsequent regime from 1978 to 1990
• Mujahedin conflicts between 1991 and 1994
• Northern Alliance and Taliban fighting from 1995 to September 2001
• Aerial campaign by Coalition and NATO Forces commencing October 2001

Historical Achievement of Mine Action

Mine and UXO survey and clearance, which was commenced in 1994 by several organizations including ATC, Organization for Mine Clearance and Afghanistan Rehabilitation, The HALO Trust, Mine Clearance Planning Agency and Mine Detection Dog Center in Kabul City. After some years, two more national and international mine-clearance organizations—Demining Agency for Afghanistan and Danish Demining Group—became involved in this process. The mentioned organizations are supported by the United Nations Voluntary Trust Fund, the Office of Weapons Removal and Abatement in the U.S. Department of State’s Bureau of Political-Military Affairs (PMWRA) and other bilateral donors. Since then, significant achievements have been made in mine clearance in Kabul City. After decades of conflict, the Kabul City Clearance Project is addressing the dangers of mine and unexploded ordnance that pose a threat to the safety and livelihood of Kabul’s expanding urban population. KCCP is an 18-month collaborative project that utilizes the resources of Afgham Technical Consultants, a local clearance nongovernmental organization, to implement a mine-clearance plan in 36 impacted communities.

Kabul City’s History of Contamination

Kabul City has experienced prolonged and intense conflict resulting from:

• The Russian invasion and its subsequent regime from 1978 to 1990
• Mujahedin conflicts between 1991 and 1994
• Northern Alliance and Taliban fighting from 1995 to September 2001
• Aerial campaign by Coalition and NATO Forces commencing October 2001

Historical Achievement of Mine Action

Mine and UXO survey and clearance, which was commenced in 1994 by several organizations including ATC, Organization for Mine Clearance and Afghanistan Rehabilitation, The HALO Trust, Mine Clearance Planning Agency and Mine Detection Dog Center in Kabul City. After some years, two more national and international mine-clearance organizations—Demining Agency for Afghanistan and Danish Demining Group—became involved in this process. The mentioned organizations are supported by the United Nations Voluntary Trust Fund, the Office of Weapons Removal and Abatement in the U.S. Department of State’s Bureau of Political-Military Affairs (PMWRA) and other bilateral donors. Since then, significant achievements have been made in mine clearance in Kabul City.