Kabul City Clearance Project

Mohammad Akbar Oriakhil

Mine Action Coordination Centre of Afghanistan

Follow this and additional works at: http://commons.lib.jmu.edu/cisr-journal

Part of the Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation

Available at: http://commons.lib.jmu.edu/cisr-journal/vol15/iss3/14

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
The NR 442bounding mine, both of which are normally buried and difficult to detect. The Belgian NR 413 fragmentation mine is suspected. The NR 109 trip flare, also present in Libya, is easily confused with the NR 413. Despite the similarity of the fuze and body, the components of these two devices have different threads and are not interchangeable.

Two other mines, neither of which was previously associated with Libya, have also been found in Benghazi. Both the Yugoslav TMA-5 and the Czech PT Mi-Ba-III are minimum-metal AT blast mines that can be difficult to detect. These are large mines capable of immobilizing main battle tanks, and would completely destroy any civilian vehicle. The PT Mi-Ba-III fuze incorporates a cocked striker, meaning that the mechanism is spring-loaded and therefore capable of functioning at any time. The plastic collar retaining the striker is a blow-in-place item.

Conclusion

The threat in Libya could create a significant challenge for deminers, with a combination of unrecorded minefields, difficult detection, the presence of tripwires and the potential deterioration of fuze mechanisms. Demining nongovernmental organizations have already begun clearance operations with the United Nations Mine Action Service Joint Mine Action Coordination Team, working to coordinate operations. In addition to the standard process of survey, minefield delineation and clearance, a major stockpile destruction program will also be needed. Sadly, despite widespread adoption of the AP Mine Ban Convention, mines have once again played a role in modern conflict. They bring with them the dangerous, costly and laborious process of demining, along with the disheartening prospect of long-term socioeconomic impact on the communities where they are found. See endnotes page 83.

Kabul City Clearance Project

After decades of conflict in Afghanistan, the Kabul City Clearance Project is addressing the dangers of mine and unexploded ordnance that pose a threat to the safety and livelihood of Kabul’s expanding urban population. KCCP is an 18-month collaborative project that utilizes the resources of Afghan Technical Consultants, a local clearance nongovernmental organization, to implement a mine-clearance plan in 36 impacted communities.

Kabul City’s History of Contamination

Kabul City has experienced prolonged and intense conflict resulting from:

1. The Russian invasion and its subsequent regime from 1978 to 1990
3. Northern Alliance and Taliban fighting from 1995 to September 2001
4. Aerial campaigns by Coalition and NATO Forces commencing October 2001

Historical Achievement of Mine Action

Mine and UXO survey and clearance, which was commenced in 1994 by several organizations including ATC, Organization for Mine Clearance and Afghanistan Rehabilitation, The HALO Trust, Mine Clearance Planning Agency and Mine Detection Dog Center in Kabul City. After some years, two more national and international mine clearance organizations—Demining Agency for Afghanistan and Danish Demining Group—became involved in this process. The mentioned organizations are supported by the United Nations Voluntary Trust Fund, the Office of Weapons Removal and Abatement in the U.S. Department of State’s Bureau of Political-Military Affairs (PM/WRA) and other bilateral donors. Since then, significant

Figure 1. Map showing the extent of landmine contamination in Kabul City, Afghanistan. May courtesy of MACC.
progress has been made toward ridding the city of these hazards, including the following:

- Almost 60,000 anti-personnel mines, 2,000 anti-tank mines and more than one million items of UXO were located and destroyed.1
- More than 25 sq km. (9.65 sq miles) of minefields were cleared and more than 168 sq km. (64.87 sq miles) of battlefields were cleared.1

The map in Figure 2 shows where clearance has taken place in Kabul City. Despite these successes, more than 23 years of conflict have resulted in Kabul becoming one of the world’s most heavily mined capital cities, and the civilian community continues to pay an unacceptably high price. Since 1979, mines and UXO have killed or injured 2,152 people, more than 30 percent of whom were between the ages of seven and 14. On average, this equates to 72 people and impacting 72 families per year for three decades devastated by indiscriminate death or injury.1 The chart in Figure 3 shows how, as a result of clearance achievements to date, the accident rate has significantly reduced since 2001.

Kabul City has experienced massive population growth since 2002, with a yearly increase of about 400,000 people, or 55,000 households, which urgently require access to land and services. Mines and UXO pose the threat of death and injury, and also block access to vital needed resources for this rapidly growing city. These hazards directly impact approximately 584,703 men, women and children.1

The presence of mines and UXO significantly affects resettlement and development within the city limits, and contributes to restricted economic growth and opportunity for the city’s most vulnerable and disadvantaged communities. Though many minefields were cleared in the central and high-profile areas of the city, until funding is available, KCCP will wait to clear minefields in peripheral communities, such as mountainous areas and other locations that appear deserted or unused. The mines in these areas, however, threaten the rising urban-poverty population. Communities forced to live on the edges of established society put themselves at increased risk of mine/UXO accidents due to necessity as they search for fuel (e.g., grasses, wood), medicinal plants, food (e.g., mountain rhubarb) and graze their animals in areas suspected to be unsafe.

Operational Methodology

Kabul City’s remaining hazards are located in ward numbers 3, 5–8, 14–16 and 19–22. The operational methodology is based on an integrated approach to demining using manual-demining teams supported by mine-detection dog teams and mechanical assets, plus a roving explosive-ordnance-disposal capacity. The KCCP was designed for completion in 18 months, with operations suspended between December and March (winter season). Through analysis of the minefields in each

Cluster (size, location, contamination type, etc.), the assets required to most efficiently remove mine and UXO contamination were determined. Complete clearance of all known hazards in Kabul City will be achieved through the deployment of the following:

- Nineteen manual demining teams
- Three mine-detection dog teams
- One mechanical demining unit
- One EOD team

The KCCP will clear known recorded hazards in 12 out of 22 contaminated districts of Kabul City within wards 3, 5, 6, 7, 8, 14, 15, 16, 19, 20, 21 and 22 (see Figure 1). The direct beneficiaries of this project are the members from 36 mine- and UXO-affected communities. The cleared land will be used for a variety of purposes, including residential housing, livestock grazing, leisure activities and implementation of rehabilitation and development projects.

Current Situation

The project area has been divided into two phases in which the high-priority areas will be cleared during Phase 1 and the medium- and low-priority areas will be addressed during Phase 2.

The project’s first phase is funded through a contribution to the Voluntary Trust Fund made by the European Union. Clearance started 6 January 2011 and should be completed 5 January 2012. During the one-year period (two months training and 10 working months) of Phase 1, 19 community-based demining teams and one EOD team are working to clear the high-priority areas.

ATC recruited deminers from the affected communities through extensive community-liaison activities, explaining the project objectives and expected outcomes. Community elders nominated eligible candidates who then completed demining training courses conducted by Afghan Technical Consultants. The trained deminers are now busy clearing their village areas from mine and UXO hazards.

These are the projected outcomes for this clearance project:

- ATC will clear all 20 CHAs in the project area classified as first-priority tasks.
- Twenty-four CHAs classified as second-priority minefields will be cleared and then removed from the MACCA hazard list.
- Mine clearance of known hazards in Kabul City’s Dih Sabah and Bagrami districts will be completed.
- A total area of 2,340,769 square meters (579 acres) will be cleared during the project and will be handed over to villagers for agricultural and construction purposes.
- A total of 266 people from the affected communities have been provided with job opportunities as deminers, section leaders, guards, drivers, etc.
- Following the project’s completion, 10,609 families from 15 villages in Kabul City will directly benefit from the mine-clearance activities, and the region’s community as a whole will indirectly benefit.

Notes from the Field: The Journal of ERF and mine action | Fall 2011 | 15.3
Thailand and Compliance with the APMBC: Mission Impossible ... Or a Feasible Task?

This article addresses the mine-action challenges Thailand faces in maintaining compliance with the Anti-personnel Mine Ban Convention. Given the uncertainty of mine locations and the Thailand Mine Action Centre’s limited capacity, the delegation of Thailand’s mine-action resources can be an issue, as hazardous areas can be difficult to determine. The emergence of a new national land-release mine-action standard, however, means that Thailand’s ability to efficiently identify hazardous areas will allow limited resources to be appropriately assigned to areas needing clearance.

by Håvard Bach [APOPO]

The Khmer Rouge claimed yet another victim in July 2011, this time in Thailand’s Trat province near the Cambodian border. This recent incident stemmed from the legacy of fierce fighting played out between Khmer Rouge and Vietnamese forces on both sides of the Thai-Cambodian border in the 1980s. The war is finished, but casualties continue.

Fighting between the Khmer Rouge and the Vietnamese typically occurred on and around rocky hills and densely vegetated ridges, leaving grim conditions for survey and clearance. Most of Thailand’s mine-suspected areas are heavily overgrown with large sections scarcely populated and rarely visited because of the risk of potential landmines and explosive remnants of war. During the war, front lines regularly shifted, thus leaving a blurred picture of where mines may be located. While evidence of mines in many areas exists, other currently suspected areas have no real evidence of mines other than a general suspicion stemming from past warfare.

A Landmine Impact Survey was undertaken in Thailand from 2000 to 2001. More than 2,000 square kilometers (772 square miles) were enrolled in the TMAC database and mis-interpreted as a real representation of the mine problem. Subsequent efforts to resurvey these areas have resulted in the cancellation of almost 1,500 sq. km. (579 sq. mi.) of land. Today 540 sq. km. (208 sq. mi.) of land remains suspect. Despite the good effort, Thailand cannot meet its APMBC deadlines without a radical change of direction and a structured approach to resolving the problem.

Conclusion

Following completion of the KCCP, all known recorded hazards will be moved from the city (except some residual threat from exposure of any subsurface UXO that appears during construction work, movement of ERW from other areas or identification of new hazardous areas), and civilian accident rates are expected to substantially decline. Also, a number of people trained as deminers during the implementation of this project will be given opportunities to be hired as deminers on other projects or to advance to higher positions such as section leaders or team leaders. As soon as funds are provided for Phase 2 of this project, and Phase 2 is completed, 22 wards in Kabul will be announced free from hazards of known minefields. The cleared land will be used for housing, agriculture, livestock pasturing, leisure activities, development projects and industrial revitalization, and the people who live close to the cleared areas will be able to live safely. See endnotes page 83.

Notes

2. E-mail: akbar.oriakhil@macca.org.af

3. Website: http://macca.org.af

4. Mohammad Afkaz Oriakhil was born in Kabul and graduated from Habib High School before immigrating to Pakistan where he studied under the International Rescue Committee Construction Engineering Program. In August 1995, he joined Afghan Technical Consultations and worked as Assistant Operations Officer, Assistant Site Officer, Supervisor, and Operations Officer until February 2003. He then joined MACCA as Operations Assistant and he was promoted in 2006 to Area Manager. He is also a graduate of James Madison University’s 2010 ERW Senior Managers Course.

5. Mohammad Afkaz Oriakhil

Area Manager

Mine Action Coordinating Centre of Afghanistan (MACCA) for Central Area Mobile: +93 (7) 700 866 529 / +93 (7) 700 223 352
Email: akbar.oriakhil@macca.org.af
Skype: maboororiakhil
Website: http://macca.org.af

Notes

1. By Håvard Bach [APOPO]

The newly endorsed system challenges a common perception of how to resolve a mine problem for convention compliance. By analyzing how European countries justify compliance with the APMBC, Thailand developed an approach that could enable full compliance within a reasonable timeframe, and breaches traditional belief that it would take more than 100 years to rid Thailand of landmines. Thailand’s solution may be an example of how similar problems could be addressed in other countries.