April 2010

The Saloglu Project

Perviz Gidayev
Azerbaijan National Agency for Mine Action

Follow this and additional works at: http://commons.lib.jmu.edu/cisr-journal

Part of the Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation
Available at: http://commons.lib.jmu.edu/cisr-journal/vol14/iss1/7

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
The Saloglu Project

Following the collapse of the Soviet Union in 1991 and the subsequent withdrawal of Soviet troops, Azerbaijan declared its independence. As the Soviet Army withdrew, it destroyed a military ammunition warehouse, the largest in the South Caucasus region, in the village of Saloglu. The explosions lasted one week, scattering thousands of pieces of unexploded ordnance over an area of more than 40 square kilometers (15.44 square miles), posing serious humanitarian, environmental and socioeconomic threats to the local population.1 While scavenging for metals during unauthorized access to the territory, the local people became the victims of various incidents. The incidents caused approximately 50 casualties and the dispersed UXO following the warehouse explosions disabled more than 100 people.

Responding to the appeals of local authorities in 2001, an operation group from the Azerbaijan National Agency for Mine Action entered the contaminated area to investigate the situation. As a result of the technical investigation completed in 2003, an area of 5.7 square kilometers (2.2 square miles) was registered as contaminated. In 2004, ANAMA started clearance operations, and in December 2005, a joint NATO and ANAMA project began to detect and destroy all surface and sub-surface UXO in the contaminated areas. The project envisaged clearing 568 hectares (1,404 acres) of the most contaminated land surrounding the military base in 16 months with support from Azerbaijan, as well as Australia, Finland, Luxembourg, Norway, Turkey, Switzerland, the United States and the United Nations Development Programme.

Soon after the initiation of the project, it became clear that the contamination was far worse than originally anticipated, and due to financial difficulties, the operation was temporarily suspended. In order to resume clearance operations, ANAMA began negotiations with various institutions, including the NATO Maintenance and Supply Agency. The discussions with NAMSA resulted in the emergence of donor states and contracts, enabling the renewal of clearance operations. The reassessment of the Saloglu Project by NATO, NAMSA and ANAMA determined that the task would require significantly more time to complete, and a decision was made to divide the project into two zones in accordance with the level and complicacy of the impact. Clearance operations were divided into three phases. The first phase of the project covers the surface and subsurface of the less-affected area of the Green Zone, territories where ANAMA previously performed clearance operations itself, and the surface clearance of the highly affected Red Zone—remaining territories that were not subject to clearance and are planned for clearance operations in the second phase. Information about the phases is detailed in Figure 1 (see next page).

The areas to be cleared were further categorized depending on their level of impact and perceived clearance levels. In the first category, it was determined that the area was impossible to clean manually. In the second category, it was determined that the area was impossible to clean manually. In the third category, it was determined that the area was impossible to clean manually. In the second category, it was determined that the area was impossible to clean manually. In the third category, it was determined that the area was impossible to clean manually. In the second category, it was determined that the area was impossible to clean manually. In the third category, it was determined that the area was impossible to clean manually.

Continued on page 23
that the area could be cleared by applying a manual-excavation method, and in the third category it was determined the UXO in the area could be detected with signals by using a magnetic locator device. This categorization was specific to the Saloglu Project.

Special equipment was needed to clear the area in the first category, and this equipment was provided after special negotiations held with NAMSA. ANAMA’s EOD Group has carried out the destruction of the stored ammunition in a shorter time period by destroying UXO only one day per week, rather than the previous every day explosions, and is currently continuing its activity by getting involved with the clearance operations.

Standard Operating Procedures

There is an international standard operating procedure used in relation to battle-area clearance. The document says the detected UXO should be approached from behind at a 45-degree angle. Approaching UXO in this manner, however, is impossible in the exploded ammunition storage area because there are two to three pieces of UXO per square meter. Therefore, the methods applied during operations were written and documented, then approved by the ANAMA Director; later the opinion of NAMSA was asked. Thus, standard operating procedures are available for the exploded storage area, reflecting surface and subsurface clearance operations.

The application of the SOPs for the clearance of UXO in the Saloglu Project proved to be ineffective in clearing the exploded ammunition storage areas. Therefore, groups conducting the area’s clearance activity prepared, approved and added amendments to the SOPs specific to dealing with the exploded ammunition storage areas and clearance operations in the Saloglu Project.

During the warehouse explosions, a great number of bomb fragments spread to the surrounding area. Consequently, the level of metal contamination in the area is higher than in other war-affected areas. It is impossible to use a magnetic locator to detect ferrous objects. In metal-contaminated areas, the magnetic locator not only transmits signals from subsurface ammunition (objects), but also from all ferrous objects. To avoid missing ammunition lying subsurface in high-metal-contaminated areas, all the territory is excavated manually. The manual excavation method is still applied 80 percent of the time to those areas contaminated with high levels of metals. When an explosion occurs, bombs and fragments are strewn across the surface but can also be buried up to five meters (16 feet). Subsequently, excavation of missiles five meters (16 feet) underground affects the success and amount of time it takes to complete the project. Missiles with a length of 2.75 meters (9 feet) are excavated from a depth of five meters, and moreover, missiles with a length of 4.7 meters (15 feet) are excavated from a depth of five meters in a similar way.

Conclusion

Currently, 72 operators are working on the Saloglu Project. An area of 484 hectares (1,196 acres) has been cleared and 552,857 pieces of UXO, as well as more than 250 types and models have been detected, with 44.8 metric tons (49.4 U.S. tons) of explosive fragments having been burned. The project anticipates clearance of a total of 568 hectares (1,404 acres), leaving 84 hectares (208 acres) remaining to be cleared. The clearance operations carried out within the scope of the Saloglu Project are planned to conclude in the first part of 2011.

See Endnotes, Page 82