August 2009

Reflections from the Field: Lao PDR, Surveys and Land Release

Stephen Pritchard
Norwegian People’s Aid Laos & UXO Lao

Follow this and additional works at: http://commons.lib.jmu.edu/cisr-journal

Part of the Defense and Security Studies Commons, Emergency and Disaster Management Commons, Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation
Available at: http://commons.lib.jmu.edu/cisr-journal/vol13/iss2/10

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
it from behind, it is necessary to install shock isolators between the handler or driving wheel and the machine structure. If supporting an on-board operator, the seat must also be isolated from shock waves caused by explosions.

Another key issue in adapting agricultural technology to Technical Survey is armoring. If the machine is equipped in a way that supports tools at the front, only a light shield may be needed to protect the delicate parts. Otherwise, if the machine is originally conceived to support tools at the back, as is frequently the case, then a system to protect the undercarriage from possible damage caused by the explosion of mines must be implemented. A good approach in this case is to design special blast-resistant wheels that do not transmit the shock associated with an explosion to the chassis either by deforming flexibly or by releasing energy through frictional pins. Research on blast-resistant wheels, shock isolators and modular remote-control systems, if flexible enough to be adapted to different agricultural machines, would benefit Technical Survey processes enormously.

The Case of BiH

According to the Landmine Monitor Report 2008, 170 square kilometers (42,000 acres) of land were released to public use through area reduction in Bosnia and Herzegovina in 2007, using 21 accredited demin¬ing machines. The estimated area that still needs to be cleared consists of 1,738 square kilometers (430,000 acres). If we look at the number of agricultural tractors in the country, approximately 30,000 units, and we imagine temporarily equipping 300 of them, i.e., 1 percent of all units available, with low-cost ground-processing tools and light armoring for assessing the presence of landmines, assuming that each one could have the same productivity of one of the 21 machines used for area reduction in 2007 (around eight square kilometers [three square miles] per year), the problem of landmines in BiH could be potentially solved or drastically reduced to small, confined, highly contaminated areas in less than one year.

Conclusion

As under-developed countries continue to be affected by the world food crisis, the need for arable land is increasing. Research into more responsible agricultural practices is also becoming an imperative to fight the dramatic consequences of climate change. Investing in the redesign of local agricultural technologies can both speed up mine clearance and improve the future for mine-affected countries by addressing these other challenges simultaneously. By approaching the issue on a local instead of global level, more appropriate, sustainable and reasonable solutions can be achieved while fostering the empowerment of local populations. See Endnotes, page 62
In the past year, I have joined several such surveys with UXO Lao. In most cases, the need for full clearance is beyond question. There are, however, occasional requests for the threat level requires clarification by Technical Survey or which no further action is required. This depends on the land user’s willingness to accept the decision, as the goal of land release is to instill confidence that land is safe for use based on a thorough assessment. Technical Survey and clearance are more productively directed toward situations in which UXO contamination is highly suspected.

Major international nongovernmental organizations, such as The HALO Trust, have made significant inroads into reducing “exaggerated” contamination records using sensible field survey and database review. Across the humanitarian sector in general, such credible efforts have tended to be in isolation; most surveys have focused on capturing all Suspected Hazardous Areas.

Lao PDR is different—there is no comprehensive database of polygons. Major international nongovernmental organizations, such as The HALO Trust, have made significant inroads into reducing “exaggerated” contamination records using sensible field survey and database review. Across the humanitarian sector in general, such credible efforts have tended to be in isolation; most surveys have focused on capturing all Suspected Hazardous Areas.

Lao PDR is different—there is no comprehensive database of polygons. The raw contamination data is based on 40-year-old U.S. Air Force bombing records, the accuracy of which is mediocre at best, given the technological limits at the time of the fighting. The original Landmine Impact Survey conducted by Handicap International in 1997 has never been followed by a comprehensive attempt to measure or record UXO contamination. Despite the stipulations in Article IV of the Convention on Cluster Munitions, which Lao PDR has signed and ratified, no such effort is planned. Perhaps the condition of the databases in other mine-affected countries serves to dissuade rather than encourage “baseline survey.” The sheer quantity and impact of bombing and ground fighting in Lao PDR far exceeds that of most other countries.

Land Release

Land release is the process of changing the status of known or Suspected Hazardous Areas to released land using Non-technical Survey, Technical Survey and/or clearance in the most relevant, effective and efficient manner. Land can be released within a former SHA by gathering sufficient information to confirm the absence of mines or UXO in the area with a high degree of certainty and, therefore, recommending that suspicion of mines/UXO should no longer prevent the local population from using the land. The concept of land release redistributes limited clearance capacity: It’s not just about reducing polygons using a checklist.

In the past year, I have joined several such surveys with UXO Lao. In most cases, the need for full clearance is beyond question. There are, however, occasional requests for the threat level requires clarification by Technical Survey or which no further action is required. This depends on the land user’s willingness to accept the decision, as the goal of land release is to instill confidence that land is safe for use based on a thorough assessment. Technical Survey and clearance are more productively directed toward situations in which UXO contamination is highly suspected.

Major international nongovernmental organizations, such as The HALO Trust, have made significant inroads into reducing “exaggerated” contamination records using sensible field survey and database review. Across the humanitarian sector in general, such credible efforts have tended to be in isolation; most surveys have focused on capturing all Suspected Hazardous Areas.

Lao PDR is different—there is no comprehensive database of polygons. The raw contamination data is based on 40-year-old U.S. Air Force bombing records, the accuracy of which is mediocre at best, given the technological limits at the time of the fighting. The original Landmine Impact Survey conducted by Handicap International in 1997 has never been followed by a comprehensive attempt to measure or record UXO contamination. Despite the stipulations in Article IV of the Convention on Cluster Munitions, which Lao PDR has signed and ratified, no such effort is planned. Perhaps the condition of the databases in other mine-affected countries serves to dissuade rather than encourage “baseline survey.” The sheer quantity and impact of bombing and ground fighting in Lao PDR far exceeds that of most other countries.

Land Release

Land release is the process of changing the status of known or Suspected Hazardous Areas to released land using Non-technical Survey, Technical Survey and/or clearance in the most relevant, effective and efficient manner. Land can be released within a former SHA by gathering sufficient information to confirm the absence of mines or UXO in the area with a high degree of certainty and, therefore, recommending that suspicion of mines/UXO should no longer prevent the local population from using the land. The concept of land release redistributes limited clearance capacity: It’s not just about reducing polygons using a checklist.

In the past year, I have joined several such surveys with UXO Lao. In most cases, the need for full clearance is beyond question. There are, however, occasional requests for the threat level requires clarification by Technical Survey or which no further action is required. This depends on the land user’s willingness to accept the decision, as the goal of land release is to instill confidence that land is safe for use based on a thorough assessment. Technical Survey and clearance are more productively directed toward situations in which UXO contamination is highly suspected.

Major international nongovernmental organizations, such as The HALO Trust, have made significant inroads into reducing “exaggerated” contamination records using sensible field survey and database review. Across the humanitarian sector in general, such credible efforts have tended to be in isolation; most surveys have focused on capturing all Suspected Hazardous Areas.

Lao PDR is different—there is no comprehensive database of polygons. The raw contamination data is based on 40-year-old U.S. Air Force bombing records, the accuracy of which is mediocre at best, given the technological limits at the time of the fighting. The original Landmine Impact Survey conducted by Handicap International in 1997 has never been followed by a comprehensive attempt to measure or record UXO contamination. Despite the stipulations in Article IV of the Convention on Cluster Munitions, which Lao PDR has signed and ratified, no such effort is planned. Perhaps the condition of the databases in other mine-affected countries serves to dissuade rather than encourage “baseline survey.” The sheer quantity and impact of bombing and ground fighting in Lao PDR far exceeds that of most other countries.

Land Release

Land release is the process of changing the status of known or Suspected Hazardous Areas to released land using Non-technical Survey, Technical Survey and/or clearance in the most relevant, effective and efficient manner. Land can be released within a former SHA by gathering sufficient information to confirm the absence of mines or UXO in the area with a high degree of certainty and, therefore, recommending that suspicion of mines/UXO should no longer prevent the local population from using the land. The concept of land
release emerged because many clearance operators constitute a relatively expensive and time-consuming clearance, for land with limited or no mines or UXO. In many cases, the original data reflected the best information and tools available at the time. Subsequent meta-analysis years later found that changing the field data collection of these records. In other cases, an inaccurate original survey is blamed for over-stating the contamination; land release has generally resulted in the reduction of land requiring expensive area clearance. If someone suspects land is contaminated, we have to do something but not always clearance. Non-primary clearance tools such as machines and canines are also used as land-release methods.

While land release in itself is not a new concept, concern has grown over recent years regarding its prioritization and the prioritization process is (arguably) participatory; the prioritization process is important.

Recognizing the need to encourage reform, the United Nations Development Programme, NPA and UXO Lao, and the Government of Laos, embarked on a National Clearance Program in 2005, with the aim of improving the national clearance system and enhancing its effectiveness.

In 2005, NPA and UXO Lao conducted a study called “Enhancing the Technical Survey.” This led to the En- hanced Technical Survey project, aimed at supporting UXO Lao as it embraced effective land-release decisions. The first step was to introduce a Technical Survey that would discourage full clearance if no UXO was found. Second, the GICHID published a paper on the need to establish a new operational model for the clearance of UXO. This led to the development of the Enhanced Technical Survey project, which aimed at enhancing the technical survey process and providing a framework for effective land clearance. The Enhanced Technical Survey project was designed to support consistent land-release decisions by clearance operators. Both projects, although technical rather than operational, were essential to the development of a new national clearance system.

Conclusion

This case is not a complete success story; it is ongoing. Enabling our national counterparts to adopt a new attitude toward UXO and UXO Lao, particularly in the long-term, is critical to achieving the goals of the Enhanced Technical Survey project. The methodology incorporates the GICHID risk model as well as elements of NPA’s work on UXO Lao. The success of the Enhanced Technical Survey project rests on sound risk management and effective clearance. UXO Lao now has a policy of land release consisting of not only clearance but also with a non-technical support project with UXO Lao. In some measures, the project has achieved its goals and in others, there remain roadblocks to success. The UXO Lao has finally changed hands. For key decisions, I can see why it would not be possible to substitute for national management. UXO Lao is taking a new attitude toward UXO and UXO Lao, particularly in the long-term, is critical to achieving the goals of the Enhanced Technical Survey project.

Stephen Pritchard
Former Program Manager
Norwegian People’s Aid-Laos
E-mail: stephenpritchard@npa.nl
Web site: http://www.npa.nl.org
http://www.uxolao.gov.la

See Endnotes, page 62

Published by JMU Scholarly Commons, 2009

Stephen Pritchard is a mine-action professional from Reading, United Kingdom. Formerly employed as a Program Manager with Norwegian People’s Aid, he has spent the last year assisting UXO Lao with survey and land release issues. He is currently searching for new opportunities.