July 2007

International Symposium Draws 170 Participants

Lois Carter Fay
Center for International Stabilization and Recovery

Follow this and additional works at: http://commons.lib.jmu.edu/cisr-journal

Part of the Defense and Security Studies Commons, Emergency and Disaster Management Commons, Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation
Available at: http://commons.lib.jmu.edu/cisr-journal/vol11/iss1/31

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
The Adaptive Technology Catalog project was inspired by Purdue University’s Breaking Ground Resource Center Agricultural Project, which was developed to help farm accident victims from the United States. For more information about this resource, visit: http://injurypol. com/1kv1q

Field Day

The most interesting presentation at the conference was the demonstration held 25 April. Participants were shuffled to the outdoor demonstration site and seated comfortably upon stadium chairs to safely view the demonstration without exposure to the hot sun or flying debris.

International Symposium Draws 170 Participants

Numerous key figures in mine action recently gathered in Croatia to attend the international symposium, “Humanitarian Demining 2007—Mechanical Demining.” The symposium featured several presentations on demining, including a live field demonstration, discussed in detail here.

This machine and quality-control demonstration took place offsite in a very dry, hard, light-vegetation, dirt terrain that had been specially readied for the demonstration without exposure to the hot sun or flying debris. Field Day

The most interesting presentation at the conference was the demonstration held 25 April. Participants were shuffled to the outdoor demonstration site and seated comfortably upon stadium chairs to safely view the demonstration without exposure to the hot sun or flying debris.

The Adaptive Technology Catalog is designed to help landmine/ERW survivors become gainfully employed using simple, inexpensive technology. There are also several ideas for overcoming many disabilities. Two of the supplying company owners are active and accomplished upper-extremity amputees themselves.

It is expected that the Adaptive Technology Catalog will be an excellent resource for survivor-assistance personnel, governments and organizations planning rehabilitation projects, donors and physical trauma survivors.

There are many benefits to a catalog of this type, including

• Allows people to get back to work
• Gives donors something specific to fund
• Creates survivor independence

Machine Model Total Time (min) Average Depth (cm) Average Speed (km/h) Machine Capacity (m³/h) MiniMineWolf 5.35 19.00 1.193 3,327.77 RKK-KA 02 9.50 17.83 0.708 1,791.04 Boznera-5 16.53 25.06 0.374 975.00 Samson 300 11.26 12.14 0.562 1,367.57 MV-10 11.25 17.71 0.571 1,400.00 M-FV 2 500/770 13.41 15.25 0.492 962.14 Mini MineWolf 12.39 22.05 0.532 1,206.52 MV-4* 5.33 10.38 0.540 891.89 Boznera-4 26.10 19.44 0.239 523.12

Table 1: Preliminary results of the equipment demonstration.
Conclusion

The organizers followed a very strict testing procedure in accordance with international testing standards, which contributed to the overall results being regarded as representative under testing conditions. In these conditions, there was a astonishing difference between the flail and the tiller. It became apparent in the case of the flail that under dry conditions the operations are heavily affected by limited visibility due to dust. Whether the machines were remote-controlled or manned, lack of visibility affected the performance of the operators because they couldn’t see where to “drive" the machine.

The two Bozena flail machines both adequately cleared the test lanes, although the Bozena-4 was the slowest machine, clearing to an average depth of 19.44 centimeters (7.65 inches) in a total time of 26.10 minutes. The Bozena-5 flail cleared its lane to an average depth of 25.06 centimeters (9.87 inches) in 16.53 minutes. Both Bozena machines were unmanned.

The superiority of the two MineWolf tillers in terms of clearance capacity was indisputable among observers. The larger MineWolf, Mini MineWolf, and MiniWolf tillers demonstrated superior results under these test conditions, the use of a flail is sometimes preferred in certain circumstances, for example, shallow top soil over bedrock. For this reason the MineWolf machines may also be fitted with a flail, according to the manufacturer.4

Humanitarian Demining 2007 - Mechanical Demining was a well-organized and important symposium for the international mine action community. In just one week, participants from 35 countries learned the value of various demining technologies and had the opportunity to witness several demining machines in action. Several people commented that the controlled nature of the testing made it very easy to follow and comprehend. Each participant of the symposium will take this experience back to his or her country to continue making progress in the field of humanitarian demining.

What Ever Happened to…?

This article covers the activities of the Japan Alliance for Humanitarian Demining Support in Thailand, and can be seen as a sequel to the article, "They Started With a Temple," found in Issue 7.2 of the Journal of Mine Action1 which described the expansion of JAHDS from a small, research-based nongovernmental organization into a capable, effective mine-clearance nongovernmental organization in Thailand. Things have changed since then, and this article gives the rest of the story.

JAHDS in Thailand
by Paddy Blagden [International Mine Action]

The new team set up camp on Khao Pla Viha, part of the land belonging to the Thailand Department of National Parks, Wildlife and Plants Conservation (DNW) in the Kanchanaburi district of Sisaket province, near the famous temple of Preah Vihear on the other side of the Cambodian border. It began clearance work on ground known to be contaminated with mines and unexploded ordnance. The DNW needed the land for the development of a cultural heritage site, camping ground and educational facility, all connected with the temple and its construction.

Built circa 900 A.D., the temple is 900 metres (984 yards) in length and sits atop a cliff with a sheer drop of about 400 metres (437 yards) on three sides. The temple itself lies in Cambodian territory, but the easiest access is from Thailand because in many places the cliff forms the national frontier between Thailand and Cambodia. The temple is accessed from the Thai side, the temple is the first site on the border that can be seen from the Thai side because the temple is a candidate to become a UNESCO World Heritage Site.2

Mines and UXO were placed at the site when the border area was contested from 1983–1998. The temple area is usually open from the Thai side because the temple is a cliff, but the site is usually open from the Thai side because the temple is a cliff, but mining activity has been banned in the area since 1998.

The temple area was previously used as a training area by the Kanchanaburi group of the Thai army and other military units. The temple area is also open to tourists, and tourists are now able to enjoy the temple grounds and surrounding areas. The temple is accessible by foot from the Thai side, and tourists can easily access the temple from the Thai side.

The temple was founded in 1792 by King Rama I, and it was later expanded in 1843 by King Rama IV. The temple has been the site of significant political and religious events, and it is an important cultural and historical landmark in Thailand.

The temple is located on the banks of the Mekong River, and it is surrounded by a moat. The temple was originally built as a fortress, and it served as a royal residence and a military base. The temple was later converted into a religious site, and it is now an important pilgrimage site for Buddhists.

The temple is home to many religious statues and shrines, and it is also the site of a number of folklore stories. The temple is surrounded by a moat, and it is an important cultural and historical landmark in Thailand.

The temple is located on the banks of the Mekong River, and it is surrounded by a moat. The temple was originally built as a fortress, and it served as a royal residence and a military base. The temple was later converted into a religious site, and it is now an important pilgrimage site for Buddhists.

The temple is home to many religious statues and shrines, and it is also the site of a number folklore stories. The temple is surrounded by a moat, and it is an important cultural and historical landmark in Thailand.

The temple is located on the banks of the Mekong River, and it is surrounded by a moat. The temple was originally built as a fortress, and it served as a royal residence and a military base. The temple was later converted into a religious site, and it is now an important pilgrimage site for Buddhists.

The temple is home to many religious statues and shrines, and it is also the site of a number of folklore stories. The temple is surrounded by a moat, and it is an important cultural and historical landmark in Thailand.

The temple is located on the banks of the Mekong River, and it is surrounded by a moat. The temple was originally built as a fortress, and it served as a royal residence and a military base. The temple was later converted into a religious site, and it is now an important pilgrimage site for Buddhists.

The temple is home to many religious statues and shrines, and it is also the site of a number of folklore stories. The temple is surrounded by a moat, and it is an important cultural and historical landmark in Thailand.

The temple is located on the banks of the Mekong River, and it is surrounded by a moat. The temple was originally built as a fortress, and it served as a royal residence and a military base. The temple was later converted into a religious site, and it is now an important pilgrimage site for Buddhists.

The temple is home to many religious statues and shrines, and it is also the site of a number of folklore stories. The temple is surrounded by a moat, and it is an important cultural and historical landmark in Thailand.

The temple is located on the banks of the Mekong River, and it is surrounded by a moat. The temple was originally built as a fortress, and it served as a royal residence and a military base. The temple was later converted into a religious site, and it is now an important pilgrimage site for Buddhists.

The temple is home to many religious statues and shrines, and it is also the site of a number of folklore stories. The temple is surrounded by a moat, and it is an important cultural and historical landmark in Thailand.

The temple is located on the banks of the Mekong River, and it is surrounded by a moat. The temple was originally built as a fortress, and it served as a royal residence and a military base. The temple was later converted into a religious site, and it is now an important pilgrimage site for Buddhists.