July 2007

The Mine-action Process in Iraqi Kurdistan

Jamal Jalal Hussein
Iraqi Kurdistan Mine Action Agency

Follow this and additional works at: http://commons.lib.jmu.edu/cisr-journal

Part of the Defense and Security Studies Commons, Emergency and Disaster Management Commons, Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation
Available at: http://commons.lib.jmu.edu/cisr-journal/vol11/iss1/29

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
picked it up and moved it out from the bomb crater to a nearby area. I was afraid when moving the bomb but I needed the money. In one big crater I could get 60 kilograms (88 pounds) of scrap metal. Currently, scrap metal is approximately 1,700 kip per kilo (approximately US$0.08/lb.11). Nearly all UXO contamination is in rural Lao where most people—about 80 percent of the population—are subsistence rice farmers and have limited options for generating a cash income if they stay within their communities and tend to small gardens. Almost all respondents who reported voluntary exposure to potentially live ordnance were able to provide examples of the risk-reduction strategies they took. These indigenous risk-reduction strategies are often at odds, however, with expert views of safe handling of UXO. Indeed, some respondents also recognized that their strategies might still result in injury if they tried to learn more by watching village experts or repeatedly observing UXO clearance teams to learn from the way they handle UXO. Scrap-metal collectors, including men, women and children using locally-pressured metal detectors also had a number of risk-reduction strategies including one described in the following statements:

“I feel safer when digging, more confident to pick up UXO when I hear the small beep.”

“The system of the detector is that if we find a small piece of scrap, we get a different sound, if we find a large piece of metal, we get a loud sound.”

While a number of respondents were able to describe strategies they use for distinguishing between safe and unsafe ordnance, respondents identified accurate recognition skills as a major area in which they felt they needed more knowledge, according to one scrap-metal dealer: “Without knowing it, I have bought many things from villagers—BLUs12 with explosives, hand grenades, mortars—when I hear the small beep.”

Upgrade to full version to continue reading.

Conclusion

The assessment found UXO risk-takers, including women and children, are generally aware of the risk and engage in some form of risk-assessment process, which they use to make rational and deliberate decisions regarding acceptable risk. However, from other stakeholders’ perspectives such as humanitarian mine-action experts, law enforcement bodies, educators and decision makers, there are different views on acceptability and rationality of local risk-assessment processes. This conflict is largely about a divergent definition of risk, differences in how problems are structured and solved, and differences in judgments about the probability of an accident, and different kinds of knowledge.

While awareness is an important prerequisite to change and ongoing awareness campaigns may be essential for children, the assessment did not identify it as a major determinant of risk behaviour. Focusing on traditional message-based approaches to UXO is likely to result in developing an intervention that does not address the major underlying determinants of behaviour. Traditional messages on expert-processed positive behaviours common in MRE programmes may include “Don’t touch UXO and ‘If you see UXO, report it to a mine-action agency!’” However, this approach could result in MRE planners falling into the common pitfall of developing an intervention that does not address the major determinants of high-risk behaviour. To be effective, the MRE programme will have to take into account the determinants of behaviour identified in the assessment. In this sense, it represents a paradigm shift from current “export” HMI practice and message-based MRE. With its emphasis on standards, safety, technical expertise, and zero or minimal risk, implementing such an approach, which actively engages high-risk populations and builds upon current coping strategies and knowledge, is likely to be challenging. Such an approach will require a change from zero to risk-minimization and recognition of the often valid risk-assessment processes and risk-reduction strategies indigenous communities employ. It may also involve a more meaningful and useful transfer of knowledge from experts to laypeople. As M. Wodtke13 noted, speaking on the efficacy of health promotion, even when it is known to undermine successful prevention activities and the people are aware of the preventative tools, such interventions are often unpopular with policy makers, lobby groups, the public and even practitioners themselves. Recent examples of risk-minimisation and risk-reduction strategies in taking a path towards UXO risk reduction.

As the assessment has shown, the complex milieu in which behavioural decisions are made calls for a shift to a risk-minimisation approach. A range of integrated interventions that aim to address the underlying vulnerabilities of UXO-affected communities is of utmost importance. From this perspective, UXO contamination in Laos represents a collaborative, multi-sectoral and multi-level response that includes a range of legislative and regulatory strategies, improved UXO clearance methodology and targeting of resources, skills training, MRE and an integrated approach to UXO action that enables the implementation of broader poverty-alleviation and sustainable-livelihood strategies. Such an approach will save lives, reduce injuries and promote economic growth and development, which in turn will contribute to addressing underlying vulnerabilities and reduce UXO risk.

References

• See Endnotes, Page 9

Special thanks to Lisa Obergemminger, International Team Leader for the project andfield-officer who accompanied me for Lao PDR. MAG would also like to thank UNICEF for its support in the implementation of the assessment.

Clearance Goals

The vision of the Iraqi Kurdistan Mine Action Agency is to rid Kurdistan of ERW. Currently the mission is to reduce the impact of mines and unexploded ordnance in the affected communities of Kurdistan. This will be achieved through the demining process (survey of contaminated communities, mapping, marking of hazardous areas, and destruction of mines and UXO). Mine-risk education and victim assistance are essential. It is a great challenge to clear mines from Kurdistan due to the difficulty of the demining process, the large areas that were contaminated and the approximate quantity of emplaced mines numbering in the millions.

Achievements

There are 3,512 registered minefields in Kurdistan. From the beginning of the demining process in Kurdistan early 1993 through late 2004, a total of 1,830,000 square meters (2.17 square miles) of mined areas have been cleared, with 25,226 anti-personnel mines, 890 anti-tank mines and 273,404 pieces of UXO destroyed. Throughout 2005 and 2006 a total of 100,083 people have directly benefited from IKMAA’s clearance, explosive ordnance disposal and MRE efforts.

Factors Influencing Demining Difficulties

Experience shows many factors directly affect the clearance process and lead to a slowdown in progress. The age of the minefields, as they are already 20–26 years old, leads to a number of complicating factors and difficulties in conducting demining operations. Some of these factors are related to Kurdistan’s natural terrain and topography while other factors stem from the difficulty of mine clearance, the roles associated with mine clearance and difficulty of implementing the International Mine Action Standards due to safety concerns. Specific factors that affect mine clearance are:

• Limited period of time to work in some minefields due to weather
• Hard ground
• High, dry vegetation in most mine areas
• Lack of desire by deminers to work in mine clearance because of the threat of dealing with suspected areas
• The existence of high numbers of metal fragments that slow progress because mine-clearance personnel must check each square meter of ground with metal detectors. Most of Kurdistan’s large minefields were battle areas during the Iran-Iraq War (1980–1988).
Photographs which were taken as MRE IKMAA was presented via a number of (manual, mechanical and mine-detecting played, such as explosive ordnance disposal, tion at a photography exhibition on 4–5 July Erbil 1963-1989 469 275 261 79 730 354 Sulaimaniyah 1963-1989 440 277 389 129 869 406 Kirkuk 1959-1989 124 94 89 43 213 137 Table 1: Mine and UXO victims in four Kurdistan governorates from 1950 to 2003. Qualified and well-skilled deminers replace those leaving. Related organizations so there is no reliable tion in the form of special classes, rather than teach children skills such as using a computer, pupils regarding the danger of mines/UXO. KU-878823-0001-000141:2016.stry of Health, and the Department of Social and Economic Development. The Polus Center works closely with local partners to create and implement projects to assist people with disabilities, particularly landmine survivors, in several countries. In Polus began working internationally in 1997 in Nicaragua and later extended to Ethiopia, Honduras, Guatemala, El Salvador and Mexico. These collaborative efforts have resulted in two community-based prosthetic outreach projects, an accessibility project, a disabilities leadership center, a regional wheelchair-manufacturing project, and a series of capacity-building mine-grants to local organizations and individuals. The Polus Center uses a locally based, holistic approach to ensure that project beneficiaries are the ones driving services forward, and broad support is created in the community where they live. The MAIC staff and JMU’s faculty consist of subject-matter experts in survivor assistance, mine action and management; we are also experienced in developing and delivering curricula for a variety of constituencies, including program planners and project implementers, such as those for whom this survivor-assistance training program is designed. **MAIC Survivor Assistance Projects** New projects underway at the Mine Action Information Center are described here, including a best-practices guidebook on casualty data, survivor-assistance training and a catalog of adaptive technologies. by Loïs Carter Fay and Dr. Suzanne Fiedler (Mine Action Information Center)