November 2006

Issue 10.2 Endnotes

CISR JOURNAL

Follow this and additional works at: http://commons.lib.jmu.edu/cisr-journal

Part of the Defense and Security Studies Commons, Emergency and Disaster Management Commons, Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation

Available at: http://commons.lib.jmu.edu/cisr-journal/vol10/iss2/50

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
Damage to the clearance machine included one ten-meter and two lesser cross-bars (the cross-bars, or stupe, were deflected by an area of 30 by 30 centimeters [11.8 by 5.2 inches]). The damage seemed to be minor as compared to the previous tests with the TM 57. The mine crater in the ground was of normal size. The impact of the mineWolf clearing despite the damage it suffered. The TM 57 also determined on-site upon impact with the mine-clearing device. The test occurred approximately 0.2 m (0.66 ft) off-the-hand, upper edge of the tiller. Damage to the Minewolf included one outer tooth that was bent outwards and four cross-bars that were deflected by an area of 30 by 30 centimeters (11.8 by 5.2 inches). Two cross-bars were torn off at the end of the weld seam. The tine-control device bent outwards but still functioning. After some provision work lasting about 15 minutes, a ton with the tiller was performed. The tiler performance was still sufficient. The mine-clearing and drill train with power hands were still in reparable condition. The cleaning quality was still good as shown by the ground appearance.

Fragmentation Mine Tests with AP Mine DM 31

Two consecutive door impacts with AP Mine DM 31 were performed. The mines were placed on solid ground 10 metres and five metres (32.8 and 16.4 ft) from the sides. On the left-hand (fully armed) side of the mine-clearing vehicle and the mine DM 56A1W was initiated by a detonator. Approximately two seconds later, the explosive device of the mineWolf was triggered in the launch box and detonated about one meter (3.3 ft) above the ground. At a 10-metre (32.8-ft) distance, there were only a few fragments hits on the equipment. There were only small marks on the equipment. Twenty-four hours later, the operated equipment contained two dents in the three-millimeter (0.12-inch) instrument box, one hit was found on the cabin glass. At a five-metre (16.4-ft) distance, the fragment hits were more severe: slight dents in the six-millimeter (0.24-inch) armour plates. No fragment penetrations through the protected operator cab were detected. The operability of the MineWolf was not affected by the fragment hits.

Final Summary of Results

The complete and final summary of results from testing is taken from the German General Armed Forces Technical Center for Weapons and Ammunition’s Final Report: MineWolf Clearing of Live Mines. The mine-clearing MineWolf system with both accessory devices is suitable for clearing live anti-tank mines. The use of the flail device for clearing anti-tank mines caused only minor damage that could be repaired with a limited effort so did not necessitate any repairs at all. The use of the tiler device against live anti-tank mines, however, resulted in considerably greater damage which could only be repaired with a substantially greater effort than those caused with the tiler. The repairs, mainly welding would have to be performed on-site that same day. The load on the operator is thus considerable in the use of both the tiler device and the flail.

In conclusion, into taking the results achieved by MineWolf during opera-
inions in Bosnia-Herzegovina, Croatia and southern Sudan, these results confirmed that the new concept is the basis for developing the demining process from ground preparation to mine clearance and shows improvement over other methods and systems with regard to effectiveness, quality and cost.
1. Mire- risk Education and the Amateur Scrap-metal Hunter, Yoshfeld [from page 51]

ENotes

2. The 25 percent reduction was over the previous system we used. We have weekly reports covering a.

4. Additional contacts for this article are: 2.

6. In Sri Lanka a rake process is currently used for manual demining and it generates nearly 100.

7. In June 1997, and thus is commonly known as the Ottawa Convention. 3.

8. The Use of Plastic Laminations to Protect Polycarbonate Blast Protection Visors 4.

9. Between August 14 and December 14, 2006, 26 people died (six of them under the age of 18) and 160 others were wounded (57 under 18) by unexploded munitions. 5.

