August 2006

A Rose by Any Other Name: The Interrelationship of Landmines and Other Explosive Remnants of War

Richmond H. Dugger III

Follow this and additional works at: http://commons.lib.jmu.edu/cisr-journal

Part of the Defense and Security Studies Commons, Emergency and Disaster Management Commons, Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation

Available at: http://commons.lib.jmu.edu/cisr-journal/vol10/iss1/11

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
A Rose by Any Other Name: The Interrelationship of Landmines and Other Explosive Remnants of War

The author explores the vast diversification in landmine etymology, condemning efforts that sought to provide more information but only complicated an already difficult process. Dugger continues with a historical perspective on the progression of language and processes used to address problems posed by landmines and other explosive remnants of war.

When I first became involved with unexploded ordnance and landmines in 1983, the terminology was more straightforward and perhaps a bit more descriptive than the tortured phrasing we use today. We named our company “UXB” after seeing the long-running adaptation of Masterpiece Theatre entitled “Danger UXB.” (UXB is a British acronym for “unexploded bomb” and the show depicted the trials and successes of the elite British UXB teams.)

Most everything back in the early 1980s could be described as a mine, a rocket, or a bomb. The more clever members of our group would first enhance the description. We might note, for example, a “mine” such as a “little” mine or a “big” bomb. Whatever the “name du jour,” all of these terms were potentially deadly and sometimes bore more of an impact upon the geopolitical landscape than their precise otherwise indicated.

Still politicians may believe they are the facilitators of change, in most cases they are not. How refreshing it would be for politicians in some of the conflict-ridden countries to decide to settle their disputes with a duel, as opposed to using the weaponry in hand and exploiting their populations to the threats of landmines and other explosive remnants of war. Since that sort of “绅士化” behavior is long gone, politicians almost universally come to rely upon their military as the primary facilitators of change.

Without question, the world’s military organizations are the primary catalysts for change, but they are followed in rapid succession by a host of others including, but not limited to, religious groups, activists, non-governmental organizations, militas, family groups and terrorists. There are immense variations in personnel, technology and application methodology resident within these groups, but we know each will use whatever technology and methodology available in an attempt to achieve its goals—taking what they have and making the very best use of it. It is at this point that the threads of the relations between landmines and other ERW begin to emerge. I often wonder that there are considerable degrees of capability in the military organizations of the world. We can weave threads to show a conclusive linkage between the low cost/low technology of landmines and the high cost/high technology usually found in other ERW, and how these current or legacy threats impact the world’s population and effect change.

Evens the suspected presence of the “dangerous duo”—landmines and other ERW—can have a significant impact on how populations function. The effectiveness of any weapon depends upon two factors: its ability to damage or destroy men and matériel and the morale effect of its use, or threat thereof, upon the enemy. In most cases, the threats posed by landmines and other remnants of war are not wholly independent of each other. Since this audience is knowledgeable on the specifics of both landmines and other ERW, I want to dwell more on the conceptual framework that seeks to categorize the sources of these two types of threats and how, even from differing sources, these threats have been commodified, coexist and cause problems in many countries throughout the world.

The earliest description of a pressure-operated landmine comes from the German military historian H. Frischer von Flemming, who described a fladekorn (a flying mine) in his 1726 book. He wrote, “It consisted of a ceramic container with glass and metal fragments embedded in the clay containing 0.90 kilos [2 lb] of gunpowder, buried at a shallow depth in the glass of a fortress and acted by someone stepping on or walking over the landmine itself.”

The same basic low-cost, low-technology method is being used quite effectively today. In quantity, anti-personnel landmines can be procured for less than US$3 each. They can be rapidly deployed by minimally trained personnel and provide a significant anti-invasion capability even for the most advanced military opponents. Generally, they are manufactured by a group of Second-World countries and are deployed by many Third-World countries that are pressed to make do with what they can afford.

Of course, few of these facilitators recognize the connection between the landmine and another singlelandmine, especially when accounting for the tremendous human cost. Locating and destroying a single holdup or buried landmine can cost upwards of US$1,000, but even that cost pale when you consider the unnecessary and dreadful cost of caring for a child or other unwary civilian. Ordnance and other ERW are quite different from landmines. Ordnance predates landmines by over 400 years and is principally fixed, but can be air-dropped or launched in more recent periods; this term is used as opposed to “other remnants of war” for discussion simplicity.

Ordnance evolution may be divided into three segments. The earliest segment includes that period during which stone dumdum was employed, guns during the period 1313 to 1520 were mostly straightforward with a few early examples of more expensive cast bronze guns that have been documented. The second segment was that extending from 1520 to 1854, during which cast-iron round shot was rapidly employed. In this segment, both bronze and cast-iron ordnance was actually used, but technology advanced markedly from the first period. The increase in power of the ordnance systems during this period was due primarily to the use of iron and steel. The ordnance powder was, for the most part, a small technological increase due to better technical design of the guns toward the end of this period. The third or current segment started in 1854 with the innovation of elongated projectiles and filled gun barrels. Rapid progress has been made since then. Ordnance items are manufactured by most countries today, and they are deployed by virtually every country.

Ordnance is generally more powerful than landmines and the damage to men and matériel can be significantly more devastating. The moral effect of gunshot would be considered more or less constant today, as people all over the world are aware of artillery, bomblets, and noise and the destruction they can cause. However, the ordnance threat produces a moral effect quite different from landmines, mainly because of the detonations and visible destruction, but also because of the ever-present fear that one’s final moment will arrive without giving any advance notice.

“A rose by any other name would smell as sweet,” and while the “sweetness” of landmines and ERW may be somewhat evident to facilitators who employ their use, the thorns of the “rose” are all too real for the unwary who venture into their path.

In examining how these threats have become commodified and coexist, we need further investigation in each of the affected areas. There is no single answer, but a multiplicity of answers. The threats are varied, but time is often the enabling issue. If we take Afghanistan as an example, American troops ventured into Afghanistan, a host of other military and paramilitary operations had come and gone. The Russian occupation lasted a decade and their technology was on par with the American technology at the time. Local militant groups also joined their own careers and we ended up with a cauldron of legacy items accumulated and existing in one location. That story has been repeated numerous times and in many countries, so time is the enabling mechanism for the interrelationship between landmines and other explosive remnants of war.

Knowing that the threats are commodified and coexist but the start of the solutions is far away, we are going to find the proper solution set for each affected area. To mitigate population impact, many of the humanitarian-oriented world organizations have implemented various assessment programs with the goals to determine the following with some degree of scientific accuracy:

• The areas impacted by landmines and other ERW.
• The physical properties of the contamination.
• The concentration of contamination.
• The impact on population masses exposed to the threat.

There are various names and sponsors, but they are primarily information- and data-gathering programs. One of the most daunting challenges assessment programs face is compiling the actual data supporting whether or not an actual threat from landmines and ERW exists. There are many reasons for this difficulty including the nature of these threats being not always going to be obvious since most of them will be buried or otherwise hidden. The techniques generally employed for these assessments involve gathering data and information from all readily available sources like military, civil, government personnel, United Nations agencies, nongovernmental organizations, intergovernmental organizations and others conducting similar assessments.

In many instances, the data and information is often difficult to analyze, and it is equally difficult to assign proper weightage and importance. As a consequence, various ingenious methods are employed by these assessment personnel to rank and manage the various community threats and arrive at solutions to landmines and other explosive remnants of war. These methodologies are varied, but time is often the enabling issue. If we take Afghanistan as an example, American troops ventured into Afghanistan, a host of other military and paramilitary operations had come and gone. The Russian occupation lasted a decade and their technology was on par with the American technology at the time. Local militant groups also joined their own careers and we ended up with a cauldron of legacy items accumulated and existing in one location. That story has been repeated numerous times and in many countries, so time is the enabling mechanism for the interrelationship between landmines and other explosive remnants of war.

A major variation (and improvement) on the programs that are already been implemented by the U.S. Department of State’s Office of Weapons Removal and Dugger: A Rose by Any Other Name: The Interrelationship of Landmines and Other Explosive Remnants of War

Published by JMU Scholarly Commons, 2006

Image 11x129 to 580x823
Abatement, which utilizes country assessments. As an enhancement to the standard assessment process, the WBA program seeks to develop concurrent plans, in coordination with the various country hosts, to assist using a fast-track approach so that serious threats can be addressed much more expeditiously than with other methods. Under this methodology, as country assessments reveal threats, the information is shared with the host country and discussions include possible solutions to the threats. As the assessments continue, the solution sets are fine-tuned, and it quickly becomes obvious which option is best to mitigate the specific threats. Once the solution is mutually agreed upon by the Department of State and the host country, the same teams that are conducting the assessments can be expanded to handle the implementation.

The benefits of this improved approach are numerous but include faster response to identified threats, a more cost-effective mitigation of threats, a fast-tracked timeline (the same teams expand to handle the solution); there is a minimal learning curve for personnel for response, and ongoing host-country buy-in to the solution. The Department of State has done an admirable job in constructing a highly efficient, responsive, accurate and timely program for weapons removal and abatement.

In conclusion, there is an irrefutable relationship between landmines and other remnants of war. Their origins are completely independent; their technology and cost components are quite different; their general manufacturing and deployment sources are different; but both excel as weapons since the effectiveness of any weapon depends upon two factors:

1. Its ability to damage or destroy men and material
2. The morale effect of its use, or threat thereof, upon the enemy.

Both of these threats have many names, and I am certain someone somewhere is thinking up a new name for landmines and other explosive remnants of war. Regardless of the new tortured phrases we will be forced to endure, let us not forget that “A rose by any other name would smell as sweet,” but these threats are the thorns of the rose. See Endnotes, page 109

Tied Campaigns: Cluster Munitions, Explosive Remnants of War and Anti-personnel Landmines

The cluster munitions campaign, following the precedent of the International Campaign to Ban Landmines, is beginning to make an impact on state views of banning or restricting cluster munitions. This article examines the history behind the fight to ban or restrict cluster munitions and its ties to the ICBL. The author also discusses the most recent developments in the process to ban or restrict cluster bombs.

by Robin Collins [World Federalist Movement-Canada]

The end of the Cold War has a lot to do with the greater attention the world now gives to humanitarian grievances. Uncapped ordnance impact data has been accumulating, but without the precedent of the anti-personnel mine campaign and the Ottawa Convention, the Belgians would probably never have considered banning cluster munitions in 2006. Most of the ICBL’s 1,400 members have limited themselves to APM eradication, victim assistance and other Convention goals, but have not yet rallied in similar numbers to the cluster munitions effort. The Cluster Munition Coalition, formed in late 2003, has approximately 170 members. Many of the CMIC’s members and leadership, however, are seasoned campaigners. Familiar to ICBL-watchers are Handicap International, Human Rights Watch, Landmine Action (UK), Mines Action Canada and Pax Christi, who are among those sitting on CMIC’s 10-member steering committee.

The CCW

The ICBL and its dynamic partnership with like-minded APM ban states (the Ottawa Process) was an innovative and collaborative way of quickly moving the ban agenda forward. Disappointment with the existing Convention on Certain Conventional Weapons (CCW)’s comatose rule (where a single recalcitrant state can dilute or block Convention provisions supported by the majority) led to the new parallel process.

The parties to the Ottawa Process focused on the idea that humanitarian impact can trump military utility. This idea was not new because international humanitarian law and an array of treaties from the mid-1800s onwards already referred to obligations toward civilians during conflict, containing such ideas as proportionality, discrimination, military necessity and humane treatment. The CMIC effort has followed the precedent of the ICBL, struggling through the slow CCW process and challenging the stragglers. If cluster-munition campaigns were unprepared for the inadequacy of the prevention measures of the Convention’s Protocol V* that were agreed to by governments, they have sober expectations about their