April 2002

Peacemakers Along the DMZ: Non-Self Destruct Landmines in the Republic of Korea

Albert Marin
U.S Forces

Michael Litzelman
Special Operations Command, Korea

Follow this and additional works at: http://commons.lib.jmu.edu/cisr-journal

Part of the Defense and Security Studies Commons, Emergency and Disaster Management Commons, Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation
Available at: http://commons.lib.jmu.edu/cisr-journal/vol6/iss1/22

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
Peacemakers Along the DMZ: Non-Self Destruct Landmines in the Republic of Korea

The need for landmines in Korea will remain the same without a change in the terrain or the proximity of either the threat or the enemy, unless we successfully find a viable, fully fielded alternative.

by LTC Albert Marin, Assistant Chief of Staff of the Plans and Operations Division, U.S. Forces, Korea, and CPT Michael Litzelman, Civil Affairs and Psychological Operations Officer with Special Operations Command, Korea

Introduction

AP landmines have caused thousands of deaths and injuries to innocent civilians and peacekeeping forces long before we encounter armed conflicts. They have prevented economies from growing and contributed to political and societal breakdown throughout the world. Non-Governmental Organizations (NGOs) and Canada, who spearheaded the 1997 Treaty on Ban Landmines, have framed the problem as the Geneva Conventions (CCW) Amendment Mines Protocol in May 1999. The United States ratified the Conventions on Conventional Weapons (CCW) Amended Mines Protocol in 1996. It is required that mine fields containing non-self-destructing AP mines be marked and monitored and that all AP mines be marked and deactivatable by standard detection equipment. John Tressel claims that these restrictions are unnecessary and obstructive. The Canadian Government is a signatory to the Mine Ban Treaty to Ban Landmines, has framed the problem as the Geneva Conventions. The United Nations Conventions Command/Combined Forces Command (UNC/CFC) plans depend heavily on the extensive employment of tactical obstacles to disrupt, turn, fix and block enemy maneuvered maneuvers in ways that enhance direct and indirect fire systems. The constant maintenance of the Korea Barrier System (KBS) requires an easily visible and very real demonstration that the Army maintains confidence in the employment of tactical obstacles to disrupt, turn, fix and block enemy maneuvered maneuvers. The multiplication that the Korea Barrier System (KBS) affords our defending forces is fundamental in halting an attack north of Seoul with the force currently available. Mixed mine fields consisting of both NSD AT and APL are used to mask against direct and indirect fire systems. The effectiveness of these mixed mine fields is not derived from the ATL alone. It is erroneous to consider ATL as a pure system – they are doctrinally and pragmatically inseparable from their APL counterpart. Any discussion of a war plan requirement for APL also carries an implicit requirement for APL ATLs are rarely employed without accompanying APL.

Military and Cost Effectiveness of NSD

Part international agreements have so far been unsuccessful in totally limiting AP landmines, in part because these mines have been considered legitimate weapons of war when used in accordance with the rules of armed conflict. Traditionally, landmines have been used to protect military bases, missile sites and demilitarized zones.

Most nations and groups seem to use them because they are a cheap and readily acceptable means of defense, because they are an easy way to protect and control national borders and territories. Stephen Biddle believes that landmines serve an important purpose for the military. They enable defensive positions to be held successfully by smaller forces, permitting commanders to use their available resources more efficiently. Mines are used to force attackers to reduce frontages and to direct those reductions into prepared engagement areas where defensive weapons can be cited for maximum effect. They increase an attacker's losses, both in inflicted direct damage on a line of attackers and soldiers and vehicles and by inducing attackers to slow down in the presence of enemy fire. They prevent the movement of enemy forces, force a military force to move with extreme caution and reduce military efficiency (Biddle 1994). Overall, mines provide an adequate protection to military personnel in the field. The constant and long-term threat that North Korea poses to the ROK demands the enduring protection afforded by NSD ATL and APL. We remain at arm's length, not peace the military situation between North Korea and the ROK has not changed. In fact, the North Korean military continues to grow in size, and improve by acquiring modern weapons. It commands a majority of its force in proximity to the Demilitarized Zone (DMZ). All of these actions potentially reduce warning time of a North Korean attack, further necessitating constant readiness. We continue to need NSD ATL and APL until acceptable alternatives are fielded and in place. United Nations Command/Combined Forces Command (UNC/CFC)-war plans depend heavily on the extensive employment of tactical obstacles within the demilitarized zones. APLs are used in conjunction with anti-personnel mines, in particular because non self-destructive AP mines can be removed from the field. Although some mines are set to explode automatically when the area is cleared, they are not accessible to noncombatants. They can help to protect the peacekeeping forces from enemy fire and assist in further reducing enemy casualties. They can provide protection against limited enemy fire systems. APLs are rarely employed without accompanying APL.

Published by JMU Scholarly Commons, 2002
Korea. They do not provide the same level of advanced bomb disposal training that the ALFs undergo from easy detection and removal.

The employment of NSDL-APL pure mines is also critical in the same way, employing NSDL-APL pure mine fields as protective mine fields is critical to breaking and re-pelling an enemy assault on a suitable portion of the terrain. It enhances force protection and allows the unit to concentrate on the bulk of its fire to defeat the largest threat.

Self-destructing APLs and ATLAS, as currently manufactured, are ill-suited to replace conventional NSD SLDs and ATLs in Korea due to the terrain. Even when fired on flat terrain, 5-45 percent of these mines end up with an "on edge" orientation. That is to say that they do not flat on the ground, instead they rest on a point or corner. Mines resting in this configuration are rendered ineffective. The terrain in Korea is heavily wooded and defiles with relatively few areas. The percentage of mines resting on "edge" will rise significantly on Korean terrain. More than 99% of these mines will have no effective field of fire and be highly lethal. NSDL-APL pure mines fail to meet this requirement.

NSDL-APL pure mines fail to meet this requirement.

SDL systems are not a viable replacement for NSDLs in this theater. They do not provide the same level of advanced bomb disposal training that the ALFs undergo from easy detection and removal.

The employment of NSDL-APL pure mines is also critical in the same way, employing NSDL-APL pure mine fields as protective mine fields is critical to breaking and re-pelling an enemy assault on a suitable portion of the terrain. It enhances force protection and allows the unit to concentrate on the bulk of its fire to defeat the largest threat.

Self-destructing APLs and ATLAS, as currently manufactured, are ill-suited to replace conventional NSDL SLDs and ATLs in Korea due to the terrain. Even when fired on flat terrain, 5-45 percent of these mines end up with an "on edge" orientation. That is to say that they do not flat on the ground, instead they rest on a point or corner. Mines resting in this configuration are rendered ineffective. The terrain in Korea is heavily wooded and defiles with relatively few areas. The percentage of mines resting on "edge" will rise significantly on Korean terrain. More than 99% of these mines will have no effective field of fire and be highly lethal. NSDL-APL pure mines fail to meet this requirement.

NSDL-APL pure mines fail to meet this requirement.

SDL systems are not a viable replacement for NSDLs in this theater. They do not provide the same level of advanced bomb disposal training that the ALFs undergo from easy detection and removal.

The employment of NSDL-APL pure mines is also critical in the same way, employing NSDL-APL pure mine fields as protective mine fields is critical to breaking and re-pelling an enemy assault on a suitable portion of the terrain. It enhances force protection and allows the unit to concentrate on the bulk of its fire to defeat the largest threat.

Self-destructing APLs and ATLAS, as currently manufactured, are ill-suited to replace conventional NSDL SLDs and ATLs in Korea due to the terrain. Even when fired on flat terrain, 5-45 percent of these mines end up with an "on edge" orientation. That is to say that they do not flat on the ground, instead they rest on a point or corner. Mines resting in this configuration are rendered ineffective. The terrain in Korea is heavily wooded and defiles with relatively few areas. The percentage of mines resting on "edge" will rise significantly on Korean terrain. More than 99% of these mines will have no effective field of fire and be highly lethal. NSDL-APL pure mines fail to meet this requirement.

NSDL-APL pure mines fail to meet this requirement.

SDL systems are not a viable replacement for NSDLs in this theater. They do not provide the same level of advanced bomb disposal training that the ALFs undergo from easy detection and removal.

The employment of NSDL-APL pure mines is also critical in the same way, employing NSDL-APL pure mine fields as protective mine fields is critical to breaking and re-pelling an enemy assault on a suitable portion of the terrain. It enhances force protection and allows the unit to concentrate on the bulk of its fire to defeat the largest threat.

Self-destructing APLs and ATLAS, as currently manufactured, are ill-suited to replace conventional NSDL SLDs and ATLs in Korea due to the terrain. Even when fired on flat terrain, 5-45 percent of these mines end up with an "on edge" orientation. That is to say that they do not flat on the ground, instead they rest on a point or corner. Mines resting in this configuration are rendered ineffective. The terrain in Korea is heavily wooded and defiles with relatively few areas. The percentage of mines resting on "edge" will rise significantly on Korean terrain. More than 99% of these mines will have no effective field of fire and be highly lethal. NSDL-APL pure mines fail to meet this requirement.

NSDL-APL pure mines fail to meet this requirement.

SDL systems are not a viable replacement for NSDLs in this theater. They do not provide the same level of advanced bomb disposal training that the ALFs undergo from easy detection and removal.

The employment of NSDL-APL pure mines is also critical in the same way, employing NSDL-APL pure mine fields as protective mine fields is critical to breaking and re-pelling an enemy assault on a suitable portion of the terrain. It enhances force protection and allows the unit to concentrate on the bulk of its fire to defeat the largest threat.

Self-destructing APLs and ATLAS, as currently manufactured, are ill-suited to replace conventional NSDL SLDs and ATLs in Korea due to the terrain. Even when fired on flat terrain, 5-45 percent of these mines end up with an "on edge" orientation. That is to say that they do not flat on the ground, instead they rest on a point or corner. Mines resting in this configuration are rendered ineffective. The terrain in Korea is heavily wooded and defiles with relatively few areas. The percentage of mines resting on "edge" will rise significantly on Korean terrain. More than 99% of these mines will have no effective field of fire and be highly lethal. NSDL-APL pure mines fail to meet this requirement.

NSDL-APL pure mines fail to meet this requirement.

SDL systems are not a viable replacement for NSDLs in this theater. They do not provide the same level of advanced bomb disposal training that the ALFs undergo from easy detection and removal.

The employment of NSDL-APL pure mines is also critical in the same way, employing NSDL-APL pure mine fields as protective mine fields is critical to breaking and re-pelling an enemy assault on a suitable portion of the terrain. It enhances force protection and allows the unit to concentrate on the bulk of its fire to defeat the largest threat.

Self-destructing APLs and ATLAS, as currently manufactured, are ill-suited to replace conventional NSDL SLDs and ATLs in Korea due to the terrain. Even when fired on flat terrain, 5-45 percent of these mines end up with an "on edge" orientation. That is to say that they do not flat on the ground, instead they rest on a point or corner. Mines resting in this configuration are rendered ineffective. The terrain in Korea is heavily wooded and defiles with relatively few areas. The percentage of mines resting on "edge" will rise significantly on Korean terrain. More than 99% of these mines will have no effective field of fire and be highly lethal. NSDL-APL pure mines fail to meet this requirement.

NSDL-APL pure mines fail to meet this requirement.

SDL systems are not a viable replacement for NSDLs in this theater. They do not provide the same level of advanced bomb disposal training that the ALFs undergo from easy detection and removal.

The employment of NSDL-APL pure mines is also critical in the same way, employing NSDL-APL pure mine fields as protective mine fields is critical to breaking and re-pelling an enemy assault on a suitable portion of the terrain. It enhances force protection and allows the unit to concentrate on the bulk of its fire to defeat the largest threat.

Self-destructing APLs and ATLAS, as currently manufactured, are ill-suited to replace conventional NSDL SLDs and ATLs in Korea due to the terrain. Even when fired on flat terrain, 5-45 percent of these mines end up with an "on edge" orientation. That is to say that they do not flat on the ground, instead they rest on a point or corner. Mines resting in this configuration are rendered ineffective. The terrain in Korea is heavily wooded and defiles with relatively few areas. The percentage of mines resting on "edge" will rise significantly on Korean terrain. More than 99% of these mines will have no effective field of fire and be highly lethal. NSDL-APL pure mines fail to meet this requirement.

NSDL-APL pure mines fail to meet this requirement.

SDL systems are not a viable replacement for NSDLs in this theater. They do not provide the same level of advanced bomb disposal training that the ALFs undergo from easy detection and removal.

The employment of NSDL-APL pure mines is also critical in the same way, employing NSDL-APL pure mine fields as protective mine fields is critical to breaking and re-pelling an enemy assault on a suitable portion of the terrain. It enhances force protection and allows the unit to concentrate on the bulk of its fire to defeat the largest threat.