Area Reduction: A Solution Whose Time has Come

Bob Eaton
SAC

October 2003

Follow this and additional works at: http://commons.lib.jmu.edu/cisr-journal

Part of the Defense and Security Studies Commons, Emergency and Disaster Management Commons, Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation
Available at: http://commons.lib.jmu.edu/cisr-journal/vol7/iss3/27

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
Area Reduction: A Solution Whose Time has Come

Collectively, the mine action community has spent over $1.7 billion (U.S.) since 1992, yet it remains uncertain how much closer we are to the goal of a mine-free or even a mine-impact-free world.

by Bob Eaton, Executive Director, SAC

A 100-Year War?

Reports from seven typical mine-affected countries in 2002 indicate that, at current rates of clearance and expenditure, it will take 135 years and $20 billion to do the job in those countries alone. The mark is simply too costly and operational implications are enormous.

Table 1: Mine clearance projection for Afghanistan, Bosnia-Herzegovina, Cambodia, Chad, Mozambique, Thailand and Yemen.

<table>
<thead>
<tr>
<th>Hazard Area</th>
<th>Area Cleared (sq km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghanistan</td>
<td>1,164</td>
<td>Bosnia-Herzegovina</td>
<td>86</td>
<td>Cambodia</td>
<td>140</td>
<td>Chad</td>
<td>1.62</td>
</tr>
<tr>
<td>1,164</td>
<td></td>
<td>86</td>
<td>140</td>
<td>1.62</td>
<td>20,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Mine clearance projection for Afghanistan, Bosnia-Herzegovina, Cambodia, Chad, Mozambique, Thailand and Yemen.

The survey Working Group, at its meetings this year, has agreed that it will no longer publish area figures in its printed reports because the confidence level in area estimates based on current general survey techniques is simply too misleading.

In the early days of mine action as an industry, humanitarian mine action was inventing itself—working hard, making many mistakes and learning from some of them. General surveys and analysis of conflict zones produced maps and databases that generally defined the problem and provided a basis for general planning and resource mobilization. It was good enough at the time. But we now know that this early data collection systematically overestimated the problem. This is not surprising. Landmines are instruments of terror, and reasonable and honest people will usually err on the side of caution and overestimate the size of the problem—lives and livelihoods are in the balance.

So Much Data, So Little Time

Without a capacity to reduce these reported areas to realistic clearance, fencing and marking tasks and to prioritize these tasks, the struggle to contain the terror and restore community livelihoods will stretch far into the future and, arguably, well beyond the endurance of the donor community.

The problem confronting Croatia confers most mine action authorities: how to reduce exaggerated area estimates to realistic, prioritized clearance, fencing, and marking tasks and—to do this with an intellectual and moral certitude. From a logical point of view, it is impossible to prove a negative. It is simply impossible to prove that something does not exist. A properly conducted clearance operation can practically demonstrate that an area is safe. But this is not a solution by itself; merely producing Table 1 indicators, it takes too long and costs too much.

CROMAC notes that if the 1,630-sq km suspected hazard area can be reduced to 10 percent, then its current rates of clearance, the country will be mine-free in eight years.

The cost would still be prohibitive at 240 million Euros. As the mine action community matures and requires increased and better long-term planning, we must develop a positive approach to defining the minimal tasks necessary to contain the crisis and we must simultaneously reduce the error that has entered into too many databases in the early days of our formation.

Accentuate the Positive, Eliminate the Negative

The International Mine Action Standards (IMAS) define area reduction as "the process through which the initial area indicated as contaminated (during the general mine action assessment process) is reduced to a smaller area. Area reduction may involve some limited clearance, such as opening of access routes and the destruction of mines and UXOs which represent an immediate and unacceptable risk, but it will mainly be in the form of collecting more reliable information on the extent of the hazardous area..."*3

This definition generally fails short of a technical survey. It basically calls for a more detailed general survey. A distinction to be made between general and technical surveys is that the technical survey requires trained deminers fully equipped and supported as they were on a clearance operation. A technical survey usually involves entering into the mined area. A general survey seeks better information while remaining outside the mined area. Thus, the requirements for a general survey are considerably lower in terms of personnel, training, equipment and, finally, money.

Given the expense of technical surveys, most area reduction will depend upon better general survey methods. Since Engset's article provides new approaches to better define suspected hazard areas and is a valuable contribution to increasing the accuracy of area reduction through general survey and re-survey. It will provide the basis of a new survey Working Group proposed to improve the accuracy of Landmine Impact Survey area estimates. If utilized by the broader general survey community to reassess existing data, it will go a long way to help eliminate the negative—reducing the exaggerated area claims of many suspected hazard areas.

Classic area reduction, as defined by IMAS, tells us where we don't have to deploy mine action assets. This is a vital and time- and money-saving procedure. We need to know in a precise sense where to go on a priority basis so that risk to life and livelihood is reduced as quickly as possible.

The solution of the area reduction problem is critical to the measured success of mine action on a country and global level. Generally speaking, we have not been very good at systematic at this process, yet success is largely dependent upon it. The articles in this issue of the Journal of Mine Action advance the process, by further defining our measurement tools to that reported areas can be reasonably reduced in size with general survey techniques while at the same time focusing on task assessment and selection so that the impact of mines in the ground can be neutralized through clearance, fencing or marking.

For additional information on area reduction see "Priority Setting for Mine Action" by J.J. van der Meer and "Suspected Hazard Area Mapping in Non-Technical Landmine Surveys" by Rune V. Engset online at the Journal of Mine Action, http://imacs.jmu.edu/journal/07/3.

*All photos courtesy of the author.

References

3. Survey Working Group, Minutes of Meeting, May 2003, SWG-03-06 Protocol To—Visual Inspection,
5. www.minenactionstandards.org

Contact Information

Bob Eaton, Executive Director
Survey Action Center
6930 Carroll Ave.
Suit 240
Takoma Park, MD 20912
Tel: 301-495-3499
Fax: 301-891-9193
E-Mail: bob@sac-usa.org
Website: www.sac-usa.org

Eaton: Area Reduction: A Solution Whose Time has Come

Area Reduction: A Solution Whose Time has Come Published by JMU Scholarly Commons, 2003