Preferred Name

Kate Pinder

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.


Date of Graduation

Spring 2015

Document Type


Degree Name

Master of Arts (MA)


Department of Graduate Psychology


Deborah Bandalos


Given coefficient alpha’s wide prevalence as a measure of internal reliability, it is important to know the conditions under which it is an appropriate estimate of reliability. The present paper explores alpha’s assumption of uncorrelated errors when used with ordinal data. Alpha overestimates true reliability when correlated errors are present. In this paper, I use a simulation study to recreate three mechanisms proposed to create correlated errors in ordinal data. The first mechanism, misclassification error, occurs when there are correlated measurement errors present in the data. The second mechanism, grouping error, occurs when there are not enough categories to represent the construct in question. The final mechanism is transformation error, which occurs when observed data do not match the distribution of true scores. Results indicated that misclassification and transformation error caused correlated errors, but only misclassification error caused correlated errors that were large enough for alpha to overestimate true reliability. Researchers should consider the assumption of correlated errors when reporting and making decisions based on alpha’s value alone.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.