Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Date of Graduation
Spring 2012
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Department of Integrated Science and Technology
Abstract
Over the past decade, unmanned aerial vehicles (UAVs) have revolutionized how the U.S. engages elusive militants in low-intensity conflicts by allowing the U.S. to project continuous military power without risking combat casualties. While UAV usage promises additional tactical advantages in future conflicts, little agreement exists regarding a strategic vision for UAV research and development, necessary for the U.S. to allocate limited resources among UAV development programs that address national security objectives. The present research makes the case for a future UAV technology evolutionary path leading to fully autonomous intelligence, surveillance, and reconnaissance (ISR)/strike UAV systems for the United States Air Force that are capable of sensing their environments through multiple modalities, recognizing patterns, and executing appropriate actions in response to their real-time analyses. The thesis addresses enabling technology inroads stemming from major improvements in our understanding of human neural circuitry that promise to enable innovations in the artificial intelligence needed to achieve autonomous system function. Arguments are based on projected military and economic benefits of autonomous systems and extend the historical model established by the CIA's successful UAV program to unconventional warfare (UW) conflicts that the U.S. Air Force finds itself ill-equipped to handle. Counter-arguments are addressed relating to uncontrolled lethal technology, conflict initiation thresholds, and the vulnerability of overreliance on high-technology systems. In making the case for fully automated UAV technology, research provides a strategic future vision for autonomous UAV usage by highlighting the important interaction of artificial intelligence, “smart” wide-area sensors, and cooperative micro UAVs.
Recommended Citation
Fields, Nathan Richards, "Advantages and challenges of unmanned aerial vehicle autonomy in the Postheroic age" (2012). Masters Theses, 2010-2019. 205.
https://commons.lib.jmu.edu/master201019/205