Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Date of Graduation

Spring 2012

Document Type


Degree Name

Master of Science (MS)


Department of Integrated Science and Technology


Over the past decade, unmanned aerial vehicles (UAVs) have revolutionized how the U.S. engages elusive militants in low-intensity conflicts by allowing the U.S. to project continuous military power without risking combat casualties. While UAV usage promises additional tactical advantages in future conflicts, little agreement exists regarding a strategic vision for UAV research and development, necessary for the U.S. to allocate limited resources among UAV development programs that address national security objectives. The present research makes the case for a future UAV technology evolutionary path leading to fully autonomous intelligence, surveillance, and reconnaissance (ISR)/strike UAV systems for the United States Air Force that are capable of sensing their environments through multiple modalities, recognizing patterns, and executing appropriate actions in response to their real-time analyses. The thesis addresses enabling technology inroads stemming from major improvements in our understanding of human neural circuitry that promise to enable innovations in the artificial intelligence needed to achieve autonomous system function. Arguments are based on projected military and economic benefits of autonomous systems and extend the historical model established by the CIA's successful UAV program to unconventional warfare (UW) conflicts that the U.S. Air Force finds itself ill-equipped to handle. Counter-arguments are addressed relating to uncontrolled lethal technology, conflict initiation thresholds, and the vulnerability of overreliance on high-technology systems. In making the case for fully automated UAV technology, research provides a strategic future vision for autonomous UAV usage by highlighting the important interaction of artificial intelligence, “smart” wide-area sensors, and cooperative micro UAVs.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.