Senior Honors Projects, 2020-current

Date of Graduation

5-8-2020

Document Type

Thesis

Degree Name

Bachelor of Science (BS)

Department

Department of Computer Science

Advisor(s)

Kevin Molloy

Nathan R. Sprague

John Bowers

Michael Lam

Abstract

Advancements in the modern age have brought many conveniences, one of those being credit cards. Providing an individual the ability to hold their entire purchasing power in the form of pocket-sized plastic cards have made credit cards the preferred method to complete financial transactions. However, these systems are not infallible and may provide criminals and other bad actors the opportunity to abuse them. Financial institutions and their customers lose billions of dollars every year to credit card fraud. To combat this issue, fraud detection systems are deployed to discover fraudulent activity after they have occurred. Such systems rely on advanced machine learning techniques and other supportive algorithms to detect and prevent fraud in the future. This work analyzes the various machine learning techniques for their ability to efficiently detect fraud and explores additional state-of-the-art techniques to assist with their performance. This work also proposes a generalized strategy to detect fraud regardless of a dataset's features or unique characteristics. The high performing models discovered through this generalized strategy lay the foundation to build additional models based on state-of-the-art methods. This work expands on the issues of fraud detection, such as missing data and unbalanced datasets, and highlights models that combat these issues. Furthermore, state-of-the-art techniques, such as adapting to concept drift, are employed to combat fraud adaptation.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.