Senior Honors Projects, 2010-2019
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Date of Graduation
Summer 2011
Document Type
Thesis
Degree Name
Bachelor of Science (BS)
Department
Department of Philosophy and Religion
Advisor(s)
Tracy Lupher
Dorn Peterson
William Ingham
Abstract
Einstein was never satisfied with quantum mechanics. He argued that quantum mechanics was incomplete for two main reasons; it violated the locality principle and the separability principle. The violation of separability is an unavoidable consequence of quantum interactions. Non-separability can be seen in quantum entanglement. Non-locality, however, is more controversial. Einstein and his associates published the EPR paper in order to argue for the incompleteness of quantum mechanics. Years later, John Bell formulated what became known as the Bell Inequalities in response to the EPR paper. The Bell Inequalities are seen as a major obstacle for quantum locality. I will argue that non-locality is not a necessary implication of the Bell Inequalities. The Bell Inequalities were developed using Bell’s locality requirement as a major premise. Bell’s locality requirement can be described in terms of two conditions, parameter independence and outcome independence. A violation of either condition will lead to a violation of the Bell inequalities. Parameter independence is not violated by the results of experimental quantum physics. So, it can be argued that violations of the Bell inequalities are caused by the violation of outcome independence. Such a violation of outcome independence does not imply non-locality if we accept some form of holism or non-separability. Thus, by including some form of holism or non-separability into our picture of the quantum realm we can develop a theory that does not conflict with locality. This paper will discuss different types of holism and non-separability and how they can be used to help understand quantum phenomena.
Recommended Citation
Nisson, Catherine E., "Holism and non-separability applied to quantum mechanics" (2011). Senior Honors Projects, 2010-2019. 130.
https://commons.lib.jmu.edu/honors201019/130