Senior Honors Projects, 2010-2019
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Date of Graduation
Spring 2017
Document Type
Thesis
Degree Name
Bachelor of Science (BS)
Department
Department of Chemistry and Biochemistry
Advisor(s)
Nathan T. Wright
Christopher E. Berndsen
Isaiah Sumner
Abstract
Muscles give our bodies the ability to move by stretching and contracting. While contraction is accomplished by the well-known actin-myosin interaction, not much is known about stretch. Two integral muscle proteins involved in stretch are titin and obscurin; both are long rope-like protein molecules that seem to act as molecular springs. Mutations in these two proteins can lead to diseases such as hypertrophic cardiomyopathy and muscular dystrophy, as well as a variety of cancers. In an effort to understand muscle stretch and signaling on a more fundamental level, here we present the high resolution structure of obscurin Ig59, a domain involved in titin/obscurin binding. We also describe how unbound titin moves when stretched. Last, we describe ongoing work in elucidating the high-resolution structures and activation/inhibition mechanisms of obscurin domains Rho-GEF, Rho-GEF-PH, kinase I (KI), and kinase II (KII).
Recommended Citation
Policke, Rachel A., "Studies into the structure and function of various domains of obscurin and titin" (2017). Senior Honors Projects, 2010-2019. 376.
https://commons.lib.jmu.edu/honors201019/376