Senior Honors Projects, 2010-current

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Date of Award

Spring 2018

Document Type

Thesis

Degree Name

Bachelor of Science (BS)

Department

Department of Integrated Science and Technology

Advisor(s)

Jonathan J. Miles

Paul W. Henriksen

Mary K. Handley

William Tate

Abstract

Energy and food security relies on innovations that spur sustainable ideologies. This project considers a novel approach to grow microgreens within a controlled environment in a manner that conserves water, minimizes environmental impacts from agriculture runoff, and enables successful agriculture in virtually any environment. The eQUEST® software package, an energy simulator, has been used to create a model of the “grow box” considered in this study. The dimensions were specified, and heating, cooling, and other loads were incorporated into the model which was used to estimate energy consumption. Real-time data were collected from sensors installed in the container and were analyzed in Excel and used to validate model performance. The modeling approach allowed for multiple locations to be selected in eQUEST® in order to simulate energy consumption within different climates, and simulations are used to size renewable energy systems and storage in future iterations of the grow box. Potential future applications include military deployments, disaster relief, and urban developments. Grow boxes that completely utilize renewable sources and battery storage will bring these applications to fruition.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.