Preferred Name
James
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
ORCID
https://orcid.org/0000-0003-2633-0246
Date of Graduation
5-6-2021
Semester of Graduation
Spring
Degree Name
Master of Science (MS)
Department
Department of Computer Science
Second Advisor
Brett Tjaden
Third Advisor
M. Hossain Heydari
Abstract
In public-key encryption, a long-term private key can be an easy target for hacking and deserves extra protection. One way to enhance its security is to share the long-term private key among multiple (say n) distributed servers; any threshold number (t, t ≤ n) of these servers are needed to collectively use the shared private key without reconstructing it. As a result, an attacker who has compromised less than t servers will still not be able to reconstruct the shared private key.
In this thesis, we studied threshold decryption schemes for lattice-based public-key en- cryption, which is one of the most promising post-quantum public-key encryption schemes. We developed threshold decryption schemes for Stinson’s, the standard NTRU, and NTRU with Ring Learning with Errors (R-LWE) cryptosystems. Prototype implementations were developed for validating the functionality of these threshold decryption schemes. Our de- signs achieve heuristic security, and its security is supported by mechanisms similar to that of R-LWE.